Skip to main content
Log in

Improvement of the Mechanical Properties of Al-Si Alloys by TiC Nanoparticles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-Si alloy A356 was modified by TiC nanoparticles. First, the nanoparticles were mechanochemically activated together with aluminum powder. Next, the activated particles were hot extruded in a home-made extruder. Finally, nanoparticles thus prepared in the aluminum matrix were added to the liquid Al-Si alloy, which was then cast into sand molds. A comparison of the microstructure and mechanical properties of the modified alloy thus produced with those of the alloy without the nanoparticles demonstrated that the grain size of the modified alloy decreased. The mechanical properties determined after T6 heat treatment indicated unusual behavior, where the elongation of the modified alloys increased by 20 to 50 pct in different regions of the cast, while the tensile strength remained unchanged and the hardness increased by 18 pct. An electron microscopy study revealed concentration of dislocations near grain boundaries in the modified alloy samples. These grain boundaries serve as obstacles to dislocation motion. It was therefore concluded that the improvement in the mechanical properties of the aluminum alloy modified by TiC nanoparticles was caused by the grain-size-strengthening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Limmaneevichitr and W. Eidhed: Mater. Sci. Eng. A, 2003, 349, pp. 197-206.

    Article  Google Scholar 

  2. P.L. Schaffer and A.K. Dahle: Mater. Sci. Eng. A, 2005, 413-414, pp. 373-378.

    Google Scholar 

  3. P.S. Mohanty and J.E. Gruzleski: Acta Metall. Mater., 1995, 43 (5), pp. 2001-2012.

    Article  CAS  Google Scholar 

  4. C. Wang, M. Wang, B. Yu, D. Chen, P. Qin, M. Feng, and Q. Dai: Mater. Sci. Eng. A, 2007, 459, pp. 238-243.

    Article  Google Scholar 

  5. A. Daoud and M. Abo-Elkhar: J. Mater. Proces. Tech., 2002, 120, pp. 296-302.

    Article  CAS  Google Scholar 

  6. Shang-Nan Chou, Jow-Lay Huang, Ding-Fwu Lii, and Horng-Hwa Lu: J. Alloys Compd., 2006, 419, pp. 98-102.

    Article  CAS  Google Scholar 

  7. Y. Han, K. Le, J. Wang, D. Shu, and B. Sun: Mater. Sci. Eng. A, 2005, 405, pp. 306-312.

    Article  Google Scholar 

  8. X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, 59, pp. 190-193.

    Article  CAS  Google Scholar 

  9. S. Zhang, Y. Zhao, X. Cheng, G. Chen, and Q. Dai: J. Alloys Compd., 2009, 470, pp. 168-172.

    Article  CAS  Google Scholar 

  10. H.T. Lu, L.C. Wang, and S.K. Kung: J. Chinese Foundrymen’s Association, 1981, 29, pp. 10-18.

    Google Scholar 

  11. G.K. Sigworth and M.M Guzowski: ASF Transactions, 1985, 93, pp. 907-912.

    CAS  Google Scholar 

  12. L. Clapham and R.W. Smith: J. Cryst. Growth, 1986, 79(1-3), pp. 866-73.

    Article  CAS  Google Scholar 

  13. L. Qiyang, L. Qingchun, and L. Qifu: Acta Metall. Mater., 1991, 39 (11), pp. 2497-2502.

    Article  Google Scholar 

  14. M.C. Flemings, R.G. Riek, and K.P. Young: Mater. Sci. Eng., 1976, 25, pp. 103-117.

    Article  CAS  Google Scholar 

  15. P. Kapranos, P.J. Ward, H.V. Atkinson, and D.H. Kirkwood: Mater. Design, 2000, 21, pp. 387-394.

    Article  Google Scholar 

  16. S.N. Chou, J.L. Huang, D.F. Lii, and H.H. Lu: J. Alloys Compd., 2006, 419, pp. 98-102.

    Article  CAS  Google Scholar 

  17. H.M. Guo, X.J. Yang, and J.X. Wang: J. Alloys Compd., 2009, 485 (1-2), pp. 812-816.

    Article  CAS  Google Scholar 

  18. Liao BC, Park YK, and Ding HS: Mater. Sci. Eng. A, 2011, 528 (3), pp. 986-995.

    Article  Google Scholar 

  19. S.A. Sajjadi, M. Torabi Parizi, H.R. Ezatpour, and A. Sedghic: J. Alloys Compd., 2012, 511, pp. 226-231.

    Article  CAS  Google Scholar 

  20. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, 17 (1), pp. 5-8.

    Article  CAS  Google Scholar 

  21. S.X. Li and G.R. Gui: J. Appl. Physics, 2007, 101 (8), pp. 83525-83530.

    Article  Google Scholar 

  22. M. Tiryakioglu, J. Campbell, and J.T. Staley: Mater. Sci. Eng. A, 2003, vol. 361, pp. 240-48.

    Article  Google Scholar 

  23. E.O. Hall: Proc. Phys. Soc. B, 1951, 64, pp. 747-753.

    Article  Google Scholar 

  24. K. Lee, Y.N. Kwon, and S. Lee: J. Alloys Compd., 2008, 461, pp. 532-541.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The current study was supported by the Chief Scientist of the Israel Ministry of Industry, Trade, and Labor (The MAGNET Program Grant No. 41889). The authors would like to thank Ms. Natalia Litvak for her help in the SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Borodianskiy.

Additional information

Manuscript submitted March 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodianskiy, K., Kossenko, A. & Zinigrad, M. Improvement of the Mechanical Properties of Al-Si Alloys by TiC Nanoparticles. Metall Mater Trans A 44, 4948–4953 (2013). https://doi.org/10.1007/s11661-013-1850-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1850-4

Keywords

Navigation