Skip to main content
Log in

Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part I. Evolution of Microstructure and Texture

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical β-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.V. Jata, A.K. Hopkins, and R.J. Rioja: Mater. Sci. Forum, 1996, vols. 217-222, pp. 647-652.

    Article  Google Scholar 

  2. A.K. Vasudevan, M.A. Przystupa, and W.G. Fricke, Jr.: Scripta metall., 1990, vol. 24, pp. 1429-1434.

    Article  CAS  Google Scholar 

  3. M.J. Bull and D.J. Lloyd: 3rd Int. Conf. on Al-Li Alloys, C. Baker, P.J. Gregson, S.J. Harris and C.J. Peel, eds., The Institute of Metals, London, 1986, pp. 402–41.

  4. J.R. Hirsch: Int. Conf. on Recrystallization in Metallic Materials (’90), T. Chandra, ed., The Minerals, Metals & Materials Society, 1990, pp. 759–68.

  5. A.K. Singh, G.G. Saha, A.A. Gokhale, and R.K. Ray: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 665-675.

    Article  CAS  Google Scholar 

  6. S. Panchanadeeswaran, and D.P. Field: Acta metall. mater., 1995, vol. 43, pp. 1683-1692.

    Article  CAS  Google Scholar 

  7. J. Liu and J.G. Morris: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2029-2032.

    Article  CAS  Google Scholar 

  8. O. Brun, Th. Chauveau, and B. Bacroix: Mat. Sci. Technol., 1991, vol. 7, pp. 167-175.

    Article  CAS  Google Scholar 

  9. O. Engler, E. Sachot, J.C. Ehrström, A. Reeves, and R. Shahani: Mater. Sci. Technol., 1996, vol. 12, pp. 717-729.

    Article  CAS  Google Scholar 

  10. P.J. Gregson, and H.M. Flower: Acta metall., 1985, vol. 33, pp. 527-537.

    Article  CAS  Google Scholar 

  11. J.C. Ehrström, R. Shahani, A. Reeves, and P. Sainfort: 4th Int Conf. on Aluminium Alloys (ICAA4), T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Atlanta, Geogia Institute of Technology, vol. 2, 1994, pp. 32–39.

  12. X.-H. Zeng, N.-E. Andersson, and S.Johansson: Proc. 11 th Int. Conf. Texture of Materials (ICOTOM 11), Z. Liang, L. Zuo, and Y. Chu, eds., International Academic Publishers, Beijing, 1996, p.1172.

  13. B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Reading, MA (1978).

    Google Scholar 

  14. L.G. Schultz: J. Appl. Phys., 1949, vol. 20, pp. 1030-1033.

    Article  Google Scholar 

  15. H.J. McQueen, E. Evangelista, J. Bowles, and G. Crawford: Met. Sci., 1984, vol. 18, pp. 395-402.

    Article  Google Scholar 

  16. B. Morere, Cl. Maurice, J. Driver, and R. Shahani: Mat. Sci. Forum, 1996, vol. 217-222, pp. 517-522.

    Article  Google Scholar 

  17. F.J. Humphreys and P.N. Kalu: Acta metall., 1987, vol. 35, pp. 2815.

    Article  CAS  Google Scholar 

  18. P. Hollinshead and T. Sheppard: Metall. Trans. A, 1989, vol. 20A, pp. 1495-1507.

    CAS  Google Scholar 

  19. F. J. Humphreys and M. Hatherly: Recrystallization and Related Phenomena, Pergamon Press, Oxford, United Kingdom, 1995.

    Google Scholar 

  20. B. Ren and J.G. Morris: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 31-40.

    Article  CAS  Google Scholar 

  21. A. Merlini and P.A. Beck: Acta metall., 1953, vol. 1, pp. 598-606.

    Article  CAS  Google Scholar 

  22. X.H. Zeng, M. Ahmad, and O. Engler: Mater. Sci. Technol., 1994, vol. 10, pp. 581-591.

    Article  CAS  Google Scholar 

  23. W. Liu, X. Li, and X. Meng: Scripta mat., 2009, vol. 60, pp. 768-771.

    Article  CAS  Google Scholar 

  24. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Scripta mat., 2011, vol. 64, pp. 446-449.

    Article  CAS  Google Scholar 

  25. Cl. Maurice and J.H. Driver: Mat. Sci. Forum, 1994, vol. 157–162, pp. 807–12.

  26. D. Raabe: Acta metall. mater., 1995, vol. 43, pp. 1023-1028.

    Article  CAS  Google Scholar 

  27. T. Leffers: 15th Risø International Symposium on Materials Science, S.I. Anderson, J.B. Bilde-Sørensen, T. Lorentzen, O.B. Pedersen, and N.J. Sørensen, eds., Risø National Library, Roskilde, Denmark, 1994, p. 387.

  28. P.S. Bate, Y. Huang, and F.J. Humphreys: Acta mater., 2004, vol. 52, pp. 4281-4289.

    Article  CAS  Google Scholar 

  29. A. Böcker, H. Klein, and H.J. Bunge, Textures and Microstructures, 1990, vol. 12, pp. 155-174.

    Article  Google Scholar 

  30. H. Klein and H.J.Bunge, Steel Research, 1991, vol. 62, pp.548-559.

    CAS  Google Scholar 

  31. J. H. Driver: Mat. Sci. Forum, 1994, vol. 157-162, pp. 585–96.

    Article  Google Scholar 

  32. M.Y. Huh, S.Y. Cho, and O. Engler: Mat. Sci. Engg. A, 2001, vol. A315, pp. 35-46.

    CAS  Google Scholar 

  33. Y. Zhou, L.S. Toth and K.W. Neale: Acta metall., 1992, vol. 40, pp. 3179-3193.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support by the DRDO, Government of India. The microtexture studies were carried out using the FEG-SEM facility at the Institute Nano-Science Initiative, the Indian Institute of Science, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Mondal.

Additional information

Manuscript submitted January 12, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, C., Singh, A.K., Mukhopadhyay, A.K. et al. Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part I. Evolution of Microstructure and Texture. Metall Mater Trans A 44, 2746–2763 (2013). https://doi.org/10.1007/s11661-013-1626-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1626-x

Keywords

Navigation