Skip to main content
Log in

Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (–30 °C), which could be further reduced by purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Li, T. Nagasaka, and T. Muroga: Plasma Fusion Res., 2010, vol. 5, p. S1036.

    Article  Google Scholar 

  2. G.J. Butterworth: J. Nucl. Mater., 1991, vols. 179–181, pp. 135–42.

    Article  Google Scholar 

  3. H. Tanigawa, K. Shiba, A. Möslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, and S. Jitsukaw: J. Nucl. Mater., 2011, vol. 417, pp. 9–15.

    Article  CAS  Google Scholar 

  4. K. Sawada, K. Kubo, and F. Abe: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 784–87.

    Google Scholar 

  5. V. Sklenička, K. Kuchařová, M. Svoboda, L. Kloc, J. Buršík, and A. Kroupa: Mater. Charact., 2003, vol. 51, pp. 35–48.

    Article  Google Scholar 

  6. M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1255–62.

    Article  CAS  Google Scholar 

  7. P. Hu, W. Yan, L. Deng, W. Sha, Y. Shan, and K. Yang: Fusion Eng. Des., 2010, vol. 85, pp. 1632–37.

    Article  CAS  Google Scholar 

  8. W. Yan, P. Hu, L. Deng, W. Wang, W. Sha, Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1921–33.

    Article  Google Scholar 

  9. M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. Kempe, R. Lindau, and H. Zimmermann: FZK Report 6911, 2003.

  10. K. Sawada, H. Kushima, K. Kimura, and M. Tabuchi: ISIJ Int., 2007, vol. 47, pp. 733–39.

    Article  CAS  Google Scholar 

  11. H.K. Danielsen and J. Hald: Proc. of the 4th Int. Conf. on Advances in Materials Technology for Fossil Power Plants, R. Viswanathan, D. Gandy, and K. Coleman, eds., ASM International, Materials Park, OH, 2004, pp. 999–1012.

  12. L. Cipolla, H.K. Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, and M.A.J. Somers: Acta Mater., 2010, vol. 58, pp. 669–79.

    Article  CAS  Google Scholar 

  13. J. Hald: Int. J. Press. Vess. Pip., 2008, vol. 85, pp. 30–37.

    Article  CAS  Google Scholar 

  14. H.K. Danielsen and J. Hald: Energ. Mater., 2006, vol. 1, pp. 49–57.

    Article  CAS  Google Scholar 

  15. H.K. Danielsen and J. Hald: CALPHAD, 2007, vol. 31, pp. 505–14.

    Article  CAS  Google Scholar 

  16. J. Hald: Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark, personal communication, October 22, 2009, Shanghai.

  17. M.N. Mungole, G. Sahoo, S. Bhargava, and R. Balasubramaniam: Mater. Sci. Eng. A, 2008, vol. 486, pp. 140–45.

    Google Scholar 

  18. J. Pesicka, R. Kuzel, A. Dronhofer, and G. Eggeler: Acta Mater., 2003, vol. 51, pp. 4847–62.

    Article  CAS  Google Scholar 

  19. K. Sawada, M. Taneike, K. Kimura, and F. Abe: ISIJ Int., 2004, vol. 44, pp. 1243–49.

    Article  CAS  Google Scholar 

  20. C. Rong: Secondary Phase in Steels, Metallurgical Industry Press, Beijing, China, 2006, pp. 36–37.

    Google Scholar 

  21. J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.

    Article  Google Scholar 

  22. H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi: Mater. Lett., 2009, vol. 63, pp. 2423–25.

    Article  CAS  Google Scholar 

  23. K. Hara, H. Aoki, F. Masuyama, and T. Endo: ISIJ Int., 1997, vol. 37, pp. 181–87.

    Article  CAS  Google Scholar 

  24. K. Kimura, Y. Toda, H. Kushima, and K. Sawada: Int. J. Press. Vess. Pip., 2010, vol. 87, pp. 282–88.

    Article  CAS  Google Scholar 

  25. K. Sawada, K. Kimura, and F. Abe: Mater. Sci. Eng. A, 2003, vol. 358, pp. 52–58.

    Article  Google Scholar 

  26. J. Blach, L. Falat, and P. Ševc: Eng. Failure Anal., 2009, vol. 16, pp. 1397–1403.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Natural Science Foundation of China (No. 51001102) and National Basic Research Program of China (No. 2010CB630800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan.

Additional information

Manuscript submitted September 29, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Zhang, W., Yan, W. et al. Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel. Metall Mater Trans A 43, 5079–5087 (2012). https://doi.org/10.1007/s11661-012-1311-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1311-5

Keywords

Navigation