Skip to main content
Log in

In-Situ Measurements of Load Partitioning in a Metastable Austenitic Stainless Steel: Neutron and Magnetomechanical Measurements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to construct physically based models of the mechanical response of metastable austenitic steels, one must know the load partitioning between the austenite and the strain-induced martensitic phases. While diffraction-based techniques have become common for such measurements, they often require access to large facilities. In this work, we have explored a simple magnetic technique capable of providing a measure of the stresses in an embedded ferromagnetic phase. This technique makes use of the coupling between the elastic strain and the magnetic response of the \(\alpha^{\prime}\)-martensite in an austenitic stainless steel undergoing straining. The magnetic technique proposed here is compared to neutron diffraction measurements made on the same material and is shown to give nearly identical results. The resulting predictions of the load partitioning to the \(\alpha^{\prime}\)-martensite phase suggest that \(\alpha^{\prime}\) deforms in a complex fashion, reflecting the fact that the microstructure is progressively transformed from austenite to martensite with straining. In particular, it is shown that the apparent hardening of the \(\alpha^{\prime}\)-martensite suggests elastic deformation as an important source of high macroscopic work-hardening rate in this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In the literature, various terms for this effect have been used, including the magnetomechanical, piezomagnetic, or Villari effect. The term “Villari effect” is commonly used to describe the changes in the magnetic susceptibility at low magnetization due to an imposed stress or strain, while the term “magnetomechanical effect” tends to be used in the more general case.[21,43]

  2. FERITSCOPE is a trademark of Fischer Technology Inc., Windsor, CT.

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: ASM Trans., 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  2. G.W. Powell, E.R. Marshall, and W.A. Backofen: ASM Trans., 1958, vol. 50, pp. 478–97.

    Google Scholar 

  3. D.T. Llewellyn: J. Mater. Sci. Technol., 1997, vol. 13, pp. 389–400.

    Article  CAS  Google Scholar 

  4. L. Delannay, P. Jacques, and T. Pardoen: Int. J. Sol. Struct., 2008, vol. 45, pp. 1825–43, doi:10.1016/j.ijsolstr.2007.10.026.

  5. J. Bouquerel, K. Verbeken, and B.C. de Cooman: Acta Mater., 2006, vol. 54, pp. 1443–56, doi:10.1016/j.actamat.2005.10.059.

  6. M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, Taylor & Francis Ltd., Boca Raton, FL, 2005.

  7. K. Tao, J.J. Wall, H. Li, D.W. Brown, S.C. Vogel, and H. Choo: J. Appl. Phys., 2006, vol. 100, p. 123515.

  8. K. Spencer, K.T. Conlon, Y. Bréchet, and J.D. Embury: J. Mater. Sci. Technol., 2009, vol. 25, pp. 18–28.

  9. M.R. Berrahmoune: Ph.D. Thesis, ENSAM, Metz, France, 2006.

  10. J. Talonen: Ph.D. Thesis, Aalto University School of Science and Technology (TKK), Espoo, Finland, 2007.

  11. P. Hedstrom, L.E. Lindgren, J. Almer, U. Lienert, J. Bernier, M. Terner, and M. Odén: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1039–48.

    Article  Google Scholar 

  12. J. Talonen, P. Aspegren, and H. Hänninen: J. Mater. Sci. Technol., 2004, vol. 20, pp. 1506–12.

  13. M. Radu, J. Valy, A.F. Gourgues, F. Le Strat, and A. Pineau: Scripta Mater., 2005, vol. 52, pp. 525–30.

  14. S. Hecker, M. Stout, K. Staudhammer, and J. Smith: Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

  15. L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng. A, 2001, vol. 313, pp. 145–52.

  16. J. Post, H. Nolles, K. Datta, and H.J.M. Geijselaers: Mater. Sci. Eng. A, 2008, vol. 498, pp. 179–90.

  17. M. Smaga, F. Walther, and D. Eifler: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 394–97.

  18. A.M. Beese: Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2009.

  19. A.M. Beese, D. Mohr, and P.-O. Santacreu: Eur. Symp. on Martensitic Transformations (Esomat), Prague, Czech Republic, 2009.

  20. J. Kaleta and J. Zebracki: Fatigue Fract. Eng. Mater. Struct., 1996, vol. 19, pp. 1435–43.

    Article  CAS  Google Scholar 

  21. R. Bozorth: Ferromagnetism, Van Nostrand Inc., Princeton, NJ, 1951, pp. 14–19.

  22. S. Chikazumi: Physics of Magnetism, John Wiley & Sons Inc., New York, NY, 1964, pp. 161–85.

  23. D.C. Jiles and D.L. Atherton: J. Phys. D, 1984, vol. 17, pp. 1265–81.

    Article  CAS  Google Scholar 

  24. D.C. Jiles: J. Phys. D, 1995, vol. 28, pp. 1537–47.

  25. B. Westermo and L.D. Thompson: Adv. Instrum., Instrument Society of America, Houston, TX, 1992, vol. 47, pp. 1295–1303.

  26. A. Pétein: Ph.D. Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2007.

  27. F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 391–400.

    Article  Google Scholar 

  28. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 158–62.

  29. L. Rémy, A. Pineau, and B. Thomas: Mater. Sci. Eng., 1978, vol. 36, pp. 47–63.

    Article  Google Scholar 

  30. P.-O. Santacreu, J.-C. Glez, G. Chinouilh, and T. Frohlich: Steel Res. Int., 2006, vol. 77, pp. 686–91.

  31. Feritscope MP30E – Operator’s Manual, Fischer Technology Inc., Windsor, CT, 2006.

  32. M.R. Daymond and H.G. Priesmeyer: Acta Mater., 2002, vol. 50, pp. 1613–26.

    Article  CAS  Google Scholar 

  33. A.C. Larson and R.B. Von Dreele: Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, NM, 2004.

  34. P. Dufour: Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2007.

  35. J.D. Eshelby: Proc. R. Soc. A, 1957, vol. 241, p. 376.

  36. M.R. Daymond, C. Hartig, and H. Mecking: Acta Mater., 2005, vol. 53, pp. 2805–13.

  37. W.F. Brown: Phys. Rev., 1941, vol. 60, pp. 139–47.

  38. H.F.G. de Abreu, M.J.G. da Silva, L. Flávio, G. Herculano, and H.K.D.H. Bhadeshia: Mater. Res., 2009, vol. 12, pp. 291–97.

  39. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

  40. U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.

  41. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, and Y. Bréchet: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 873–81.

  42. L. Mazzoni-Leduc, T. Pardoen, and T.J. Massart: Int. J. Sol. Struct., 2008, vol. 45, pp. 5397–5418.

  43. E.W. Lee: Rep. Progr. Phys., 1955, vol. 18, pp. 184–230.

Download references

Acknowledgements

Financial support of this research by the ArcelorMittal Stainless Steel Research Centre and FNRS (Belgium) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Maréchal.

Additional information

Manuscript submitted November 2, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maréchal, D., Sinclair, C.W., Dufour, P. et al. In-Situ Measurements of Load Partitioning in a Metastable Austenitic Stainless Steel: Neutron and Magnetomechanical Measurements. Metall Mater Trans A 43, 4601–4609 (2012). https://doi.org/10.1007/s11661-012-1258-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1258-6

Keywords

Navigation