Skip to main content
Log in

In-Situ Fracture Observation and Fracture Toughness Analysis of Zr-Based Amorphous Alloys Containing Ductile Dendrites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of dendrite size on fracture properties of Zr-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. Three amorphous alloy plates having different thicknesses were fabricated by varying cooling rates after vacuum arc melting. The effective size of β dendrites was varied from 14.7 to 30.1 μm in the alloy plates, while their volume fraction was almost constant. According to microfracture observation of the alloy containing fine β dendrites, shear bands initiated at the amorphous matrix were connected with the notch tip as they were deepened through dendrites, which led to abrupt crack propagation. In the alloy containing coarser β dendrites, shear bands were initiated at the amorphous matrix to form a crack near the notch tip region and were expanded over large matrix areas. The crack propagation was frequently blocked by β dendrites, and many shear bands are formed near or in front of the propagating crack, thereby resulting in stable crack growth, which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length could be explained by mechanisms of blocking of crack growth, multiple shear band formation, and crack blunting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. HELIOS NANOLAB is a trademark of FEI Company, Hillsboro, OR

References

  1. K.L. Sahoo, M. Wollgarten, J. Haug, and J. Banhart: Acta Mater., 2005, vol. 53, pp. 3861–70.

  2. W. Chen, Y. Wang, J. Qiang, and C. Dong: Acta Mater., 2003, vol. 51, pp. 1899–1907.

    Article  CAS  Google Scholar 

  3. Y.C. Kim, J.M. Park, J.K. Lee, D.H. Bae, W.T. Kim, and D.H. Kim: Mater. Sci. Eng., 2004, vol. A375–A377, pp. 749–53.

  4. R. Busch, A. Masuhr, and W.L. Johnson: Mater. Sci. Eng., 2001, vols. A304–06, pp. 97–102.

  5. J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, and D.H. Kim: Scripta Mater., 2005, vol. 53, pp. 1–6.

    Article  CAS  Google Scholar 

  6. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  7. T. Egami: Appl. Phys. Lett., 1975, vol. 26, pp. 128–30.

    Article  CAS  Google Scholar 

  8. W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56.

    CAS  Google Scholar 

  9. Y.Q. Wu, T. Bitoch, K. Hono, A. Makino, and A. Inoue: Acta Mater., 2001, vol. 49, pp. 4069–77.

    Article  CAS  Google Scholar 

  10. M. Lee, H.-K. Kim, and J.-C. Lee: Metall. Mater. Int., 2010, vol. 16, pp. 877–81.

    Article  CAS  Google Scholar 

  11. C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.

    Article  CAS  Google Scholar 

  12. C.C. Hays, W.L. Johnson, and C.P. Kim: Mater. Sci. Eng., 2001, vols. A304–A306, pp. 650–55.

  13. L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, 180201(R).

  14. K.-Y. Kim, H.-S. Joo, B.-H. Kang, and W. Gao: Metall. Mater. Int., 2011, vol. 17, pp. 857–63.

    Article  CAS  Google Scholar 

  15. Y.S. Oh, C.P. Kim, S. Lee, and N.J. Kim: Acta Mater., 2011, vol. 59, pp. 7277–86.

  16. J.W. Qiao, A.C. Sun, E.W. Huang, Y. Zhang, P.K. Liaw, and C.P. Chuang: Acta Mater., 2011, vol. 59, pp. 4126–37.

    Article  CAS  Google Scholar 

  17. H.T. Jeong, W. Yook, B.J. Kim, W.T. Kim, and D.H. Kim: Met. Mater. Int., 2010, vol. 16, pp. 517–22.

    Article  CAS  Google Scholar 

  18. F. Szuecs, C.P. Kim, and W.L. Johnson: Acta Mater., 2001, vol. 49, pp. 1507–13.

    Article  CAS  Google Scholar 

  19. D.L. Davison: Metall. Trans. A, 1987, vol. 18A, pp. 2115–28.

    Google Scholar 

  20. J.G. Lee, D.-G. Lee, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3753–61.

    Article  CAS  Google Scholar 

  21. S.R. Nutt and L.M. Duva: Scripta Metall., 1986, vol. 20, pp. 1055–60.

    Article  CAS  Google Scholar 

  22. M. Tavoosi, M.H. Enayati, and F. Karimzadeh: Met. Mater. Int., 2011, vol. 17, pp. 853–56.

    Article  CAS  Google Scholar 

  23. J.G. Lee, K.-S. Sohn, S. Lee, N.J. Kim, and C.P. Kim: Mater. Sci. Eng., 2007, vol. A464, pp. 261–68.

  24. J.G. Lee, S.S. Park, D.-G. Lee, S. Lee, and N.J. Kim: Intermetallics, 2004, vol. 12, pp. 1125–31.

    Article  CAS  Google Scholar 

  25. B. Kim, J. Do, S. Lee, and I. Park: Mater. Sci. Eng., 2010, vol. A25, pp. 6745–57.

  26. S. Lee, K.-S. Sohn, C.G. Lee, and B.I. Jung: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 123–34.

    Article  CAS  Google Scholar 

  27. R.O. Ritchie and R.M. Horn: Metall. Trans. A, 1978, vol. 9A, pp. 331–41.

    CAS  Google Scholar 

  28. Y.-H. Kim, D. Kwon, and S. Lee: Acta Metall. Mater., 1994, vol. 42, pp. 1887–91.

    Article  CAS  Google Scholar 

  29. D. Broek: Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Boston, 1982, pp. 297–309.

    Book  Google Scholar 

  30. J.G. Lee, H. Lee, Y.S. Oh, S. Lee, and N.J. Kim: Intermetallics, 2006, vol. 14, pp. 987–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program (Grant No. F00030492007-311006000115) funded by the Ministry of Knowledge Economy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted February 1, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, C., Kim, C.P. & Lee, S. In-Situ Fracture Observation and Fracture Toughness Analysis of Zr-Based Amorphous Alloys Containing Ductile Dendrites. Metall Mater Trans A 43, 3675–3686 (2012). https://doi.org/10.1007/s11661-012-1200-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1200-y

Keywords

Navigation