Skip to main content
Log in

Icosahedral medium-range orders and backbone formation in an amorphous alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Analyses of metallic amorphous solids constructed using molecular dynamics (MD) simulations have demonstrated that individual short-range orders (SROs) are linked with neighboring SROs and form various medium-range orders (MROs). These MROs have been observed to have different structural stability depending on their linking patterns. On the basis of the assessment of the structural stability of various MROs, we propose new types of structural organization, namely, icosahedral medium-range orders (I-MROs) and their extended-range order that forms the backbone of amorphous solids. We also discuss why the atomic-scale structure of an amorphous alloy can be more appropriately described in terms of I-MROs, rather than by the degree of short-range ordering as characterized by the fractions of SROs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Bernal and J. Mason, Nature 185, 60 (1960).

    Article  Google Scholar 

  2. Gaskell, Nature 276, 484 (1978).

    Article  CAS  Google Scholar 

  3. H. W. Sheng, Y. Q. Cheng, P. L. Lee, S. D. Shastri. and E. Ma, Acta mater. 56, 6264 (2008).

    Article  CAS  Google Scholar 

  4. L. Yang, J. Z. Jiang, T. Liu, T. D. Hu, and T. Uruga, Appl. Phys. Lett. 87, 061918 (2005).

    Article  Google Scholar 

  5. M. Wakeda, Y. Shibutani, S. Ogata, and J. Y. Park, Intemetallics 15, 139 (2007).

    Article  CAS  Google Scholar 

  6. K. W. Park, J. I. Jang, M. Wakeda, Y. Shibutani, and J. C. Lee, Scripta mater. 57, 805 (2007).

    Article  CAS  Google Scholar 

  7. M. M. J. Treacy and J. M. Gibson, Acta cryst. A 52, 212 (1996).

    Article  Google Scholar 

  8. P. M. Voyles and E. A. Muller, Ultramicroscopy 93, 127 (2002).

    Article  Google Scholar 

  9. D. B. Miracle, Acta mater. 54, 4317 (2006).

    Article  CAS  Google Scholar 

  10. D. B. Miracle, Nature mater. 3, 697 (2004).

    Article  CAS  Google Scholar 

  11. W. K. Luo, F. M. Alamgir, J. M. Bai, H. W. Sheng, and E. Ma, Nature 439, 419 (2006).

    Article  Google Scholar 

  12. X. D. Wang, S. Yin, Q. P. Cao, J. Z. Jiang, H. Franz, and Z. H. Jin, Appl. Phys. Lett. 92, 011902 (2008).

    Article  Google Scholar 

  13. S. Y. Wang, C. Z. Wang, M. Z. Li, L. Huang, R. T. Ott, M. J. Kramer, D. J. Sordelet, and K. M. Ho, Phys. Rev. B. 78, 184204 (2008).

    Article  Google Scholar 

  14. Y. Q. Cheng, E. Ma, and H. W. Sheng, Phys. Rev Lett. 102, 245501 (2009).

    Article  CAS  Google Scholar 

  15. T. C. Hufnagel, Phys. Rev. B. 67, 014203 (2003).

    Article  Google Scholar 

  16. C. Fan, T. W. Wilson, W. Dmowski, H. Choo, J. W. Richardson, E. R. Maxey, and P. K. Liaw, Intermetallics 14, 888 (2006).

    Article  CAS  Google Scholar 

  17. X. Hui, R. Gao, G. L. Chena, S. L. Shang, Y. Wang, and Z. K. Liu, Phys. Lett. A 372, 3078 (2008).

    Article  CAS  Google Scholar 

  18. X. Hui, H. Z. Fang, G. L. Chen, S. L. Shang, Y. Wang, J. Y. Qin, and Z. K. Liu, Acta mater. 57, 376 (2009).

    Article  CAS  Google Scholar 

  19. F. Sinclair, Philosophical Magazine A 50, 45 (1984).

    Google Scholar 

  20. W. G. Hoover, Phys. Rev. A. 31, 1695 (1985).

    Article  Google Scholar 

  21. W. G. Hoover, Phys. Rev. A, 34, 2499 (1986).

    Article  Google Scholar 

  22. F. M. Richards, J. Mol. Biol. 82, 1 (1974).

    Article  CAS  Google Scholar 

  23. Y. Q. Cheng, A. J. Cao, H. W. Sheng and E. Ma, Acta mater. 56, 5263 (2008).

    Article  CAS  Google Scholar 

  24. F. P. Ramsey, Econ. J. 38, 543 (1928).

    Article  Google Scholar 

  25. M. Shimono and H. Onoder, Mater. Sci. Forum 539, 2031 (2007).

    Article  Google Scholar 

  26. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).

    Article  CAS  Google Scholar 

  27. M. L. Falk, Phys. Rev. B 60, 7062 (1999).

    Article  CAS  Google Scholar 

  28. C. A. Schuh, A. C. Lnd, and T. G. Nieh, Acta mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  29. S. J. Lee, B. G. Yoo, J. L. Jang, and J. C. Lee, Met. Mater. Int. 14, 9 (2008).

    Article  CAS  Google Scholar 

  30. K. W. Park, C. M. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 47, 759 (2009).

    CAS  Google Scholar 

  31. C. M. Lee, M. R. Lee, K..R.. Lee, K. H. Kang, B. J. Lee, and J. C. Lee, Kor. J. Met. Mater. 48, 101 (2010).

    Article  CAS  Google Scholar 

  32. K. W. Park, C. M. Lee, M. Wakeda, Y. Shibutani, M. L. Falk, and J. C. Lee, Acta mater. 56, 5440 (2008).

    Article  CAS  Google Scholar 

  33. K. W. Park, C. M. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 47, 773 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Kim, HK. & Lee, JC. Icosahedral medium-range orders and backbone formation in an amorphous alloy. Met. Mater. Int. 16, 877–881 (2010). https://doi.org/10.1007/s12540-010-1204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1204-3

Keywords

Navigation