Skip to main content
Log in

Kirkendall Effect and Mechanism of Self-Diffusion in B2 Intermetallic Compounds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Single-phase interdiffusion studies in the B2 intermetallic compounds NiAl and FeAl have demonstrated the incidence of Kirkendall effect in these systems. The implication of this observation on the operating mode of self-diffusion in these systems is discussed. The direct exchange and ring diffusion mechanisms were excluded as the possible mode of substitutional diffusion in metals and alloys on account of the incidence of Kirkendall effect during single-phase interdiffusion studies. It is suggested that on similar phenomenological considerations, the six-jump vacancy cycle mechanism, triple-defect mechanism, and antistructure bridge mechanism are precluded as possible mode of diffusion in B2 intermetallic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Seitz: Acta Crystallogr., 1950, vol. 3, pp. 355–63.

    Article  CAS  Google Scholar 

  2. H.B. Huntington and F. Seitz: Phys. Rev., 1942, vol. 61, pp. 315–25.

    Article  CAS  Google Scholar 

  3. H.B. Huntington: Phys. Rev., 1942, vol. 61, pp. 325–38.

    Article  CAS  Google Scholar 

  4. C. Zener: Acta Crystallogr., 1950, vol. 3, pp. 346–54.

    Article  CAS  Google Scholar 

  5. E.O. Kirkendall: Trans. Amer. Inst. Min. Metall. Engrs., 1942, vol. 147, pp. 104–10.

    Google Scholar 

  6. A.D. Smigelskas and E.O. Kirkendall: Trans. Amer. Inst. Min. Metall. Engrs., 1947, vol. 171, pp. 130–42.

    Google Scholar 

  7. L.C. Correa da Silva and R.F. Mehl: Trans. Amer. Inst. Min. Metall. Engrs., 1947, vol. 191, pp. 155–73.

    Google Scholar 

  8. J. Philibert: Atom Movement Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis de Cedex A, France, 1991, pp. 36–49.

  9. H. Mehrer: Diffusion in Solids, Springer, New York, NY, 2007, pp. 58–67.

    Google Scholar 

  10. E.W. Elcock and C.W. McCombie: Phys. Rev., 1958, vol. 109, pp. 605–06.

    Article  CAS  Google Scholar 

  11. E.W. Elcock: Proc. Phys. Soc., vol. 73, London, U.K., 1959, pp. 250–64.

  12. J. Philibert: Atom Movements Diffusion and Mass Transport in Solids, Les Editions de Physique, Cedex A, France, 1991, pp. 188–90.

  13. H.A. Domian and H.I. Aaronson: Diffusion in Body Centered Cubic Metals, F.R. Winslow and T.S. Lundy, eds., AMS International, Materials Park, OH, 1965, pp. 209–23.

  14. M. Arita, M Koiwa, and S. Ishioka: Acta Metall., 1989, vol. 37, pp. 1363–74.

    Article  CAS  Google Scholar 

  15. I.V. Belova and G.E. Murch: Phil. Mag. A, 1982, vol. 82, pp. 269–83.

    Article  Google Scholar 

  16. N.A. Stolwijk, M. van Gend, and H. Bakker: Phil. Mag. A, 1980, vol. 42, pp. 783–808.

    Article  CAS  Google Scholar 

  17. P. Wynblatt: Acta Metall., 1967, vol. 15, pp. 1453–60.

    Article  CAS  Google Scholar 

  18. H. Bakker, N.A. Stolwijk, and M.A. Hoetjes-Eijkel: Phil. Mag. A, 1981. vol. 43, pp. 251–64.

    Article  CAS  Google Scholar 

  19. C.R. Kao and Y.A. Chang: Intermetallics, 1993, vol. 1, pp. 237–50.

    Article  CAS  Google Scholar 

  20. S.V. Divinski and L.N. Larikov: J. Phys.: Condensed Matter, 1997, vol. 9, p. 7873.

    Article  CAS  Google Scholar 

  21. I.V. Belova and G.E. Murch: Intermetallics, 1998, vol. 6, pp. 115–19.

    Article  CAS  Google Scholar 

  22. J. Philibert: Atom Movements Diffusion and Mass Transport in Solids, Les Editions de Physiques, Cedex A, France, 1991, pp. 216–21.

  23. L.S. Darken: Trans. Amer. Inst. Min. Metall. Engrs., 1948, vol. 175, pp. 184–94.

    Google Scholar 

  24. J. Philibert: Atom Movements Diffusion and Mass Transport in Solids, Les Editions de Physiques, Cedex A, France, 1991, pp. 203–05.

  25. H. Mehrer: Diffusion in Solids, Springer, New York, NY, 2007, pp. 168–69.

    Google Scholar 

  26. J. Philibert: Atom Movements Diffusion and Mass Transport in Solids, Les Editions de Physique, Cedex A, France, 1991, pp. 187–90.

  27. H. Mehrer: Diffusion in Solids, Springer, New York, NY, 2007, pp. 347–51.

    Google Scholar 

  28. C. Herzig and S. Divinski: Diffusion Processes in Advanced Technological Materials, D. Gupta, ed., Springer, New York, NY, 2005, pp. 182–88.

  29. M. Mishin and C. Herzig: Acta Mater., 2000, vol. 48, pp. 589–623.

    Article  CAS  Google Scholar 

  30. R. Nakamura, Y. Yamazaki, and Y. Iijima: Proc. Fourth Pacific Rim Int. Conf. on Advanced Materials and Process., S. Hanada, Z. Zhong, S.W. Nam, and R.N. Wright, eds., The Japan Institute of Metals, Sendai, Japan, 2001, pp. 855–58.

  31. R. Nakamura, K. Takasawa, Y. Yamazaki, and Y. Iijima: Intermetallics, 2002, vol. 10, pp. 195–204.

    Article  CAS  Google Scholar 

  32. R. Nakamura and Y. Iijima: Phil. Mag., 2003, vol. 83, pp. 477–83.

    Article  CAS  Google Scholar 

  33. M. Salamon and H. Mehrer: Z. Metallkunde, 2005, vol. 96, pp. 4–16.

    CAS  Google Scholar 

  34. A. Paul, A. Kodentsov, and F.J.J. Van Loo: J. Alloys. Compd., 2005, vol. 403, pp. 147–53.

    Article  CAS  Google Scholar 

  35. R. Nakamura, K. Fujita, Y. Iijima, and M. Okada: Acta Mater., 2003, vol. 51, pp. 3861–70.

    Article  CAS  Google Scholar 

  36. J.D. Fast: Interactions of Metals and Gases, Macmillan Press Ltd., London, U.K., 1971, pp. 116–17.

    Google Scholar 

  37. R. Wurschum, C. Grupp, and H.-E. Schafer: Phys. Rev. Lett., 1995, vol. 75, pp. 97–100.

    Article  Google Scholar 

  38. R. Wurschum, K. Badura-Gergen, E.A. Kumerle, C. Grupp, and H.-E. Schafer: Phys. Rev. B, 1996, vol. 54, pp. 849–56.

    Article  Google Scholar 

  39. J. Wolff, M. Franz, A. Brosca, R. Kerl, M. Weynhegn, B. Kohler, M. Brauer, F. Faupel, and T. Hehenkamp: Intermetallics, 1999, vol. 7, pp. 289–300.

    Article  CAS  Google Scholar 

  40. A. Brosca, J. Wolff, M. Franz, and T. Hehenkamp: Intermetallics, 1999, vol. 7, pp. 259–67.

    Article  Google Scholar 

  41. M. Kogachi and T. Haraguchi: Mater. Sci. Eng. A, 2001, vol. 312, pp.189–95.

    Article  Google Scholar 

  42. Y.A. Chang and J.P. Neumann: Progress in Solid State Chemistry, vol. 14, G.M. Rosenblatt and W.L. Warrel, eds., Pergamon Press, New York, NY, 1983, pp. 221–301.

  43. G. Vogl and B. Sepiol: Acta Metall. Mater., 1994, vol. 42, pp. 3175–81.

    Article  CAS  Google Scholar 

  44. C.L. Fu, Y.-Y. Ye, M.H. You, and K.M. Ho: Phys. Rev. B, 1993, vol. 48, pp. 6712–15.

    Article  CAS  Google Scholar 

  45. C.L. Fu and X. Wang: Mater. Sci. Eng. A, 1997, vol. 761, pp. 239–40.

    Google Scholar 

  46. J.L. Jordan and S.C. Deevi: Intermetallics, 2003, vol. 11, pp. 507–28.

    Article  CAS  Google Scholar 

  47. M. Fahnle, J. Mayer, and B. Mayer: Intermetallics, 1999, vol. 7, pp. 315–23.

    Article  CAS  Google Scholar 

  48. K. Ho and R.A. Dodd: Scripta Metall., 1978, vol. 12, pp. 1055–58.

    Article  CAS  Google Scholar 

  49. H. Cottrell: Intermetallics, 1997, vol. 5, pp. 467–69.

    Article  CAS  Google Scholar 

  50. M. Eggersmann and H. Mehrer: Phil. Mag. A, 2000, vol. 80, pp. 1219–44.

    Article  CAS  Google Scholar 

  51. C. Herzig and S. Divinski: Diffusion Processes in Advanced Technological Materials, D. Gupta, ed., William Andrew Publishing, New York, NY, 2005, pp. 173–234.

  52. J. P. Riviere and J. G. Rilhe: Scripta Metall., 1975, vol. 9, pp. 967–70.

    Article  CAS  Google Scholar 

  53. H.-E. Schaefer, K. Frenner, and R. Wurschum: Phys. Rev. Lett., 1999, vol. 82, pp. 948–51.

    Article  CAS  Google Scholar 

  54. St. Frank, S.V. Dimenski, U. Sodervall, and C. Herzig: Acta Mater., 2001, vol. 49, pp. 1399–1411.

  55. Y. Minamino, Y. Koizumi, and Y. Inui: Defect Diffus. Forum, 2001, vols. 194-9, pp. 517–22.

    Article  Google Scholar 

  56. M. Kaisermayr, J. Combet, H. Ipser, H. Schicketanz, B. Sepiol, and G. Vogl: Phys. Rev. B, 2001, vol. 63, pp. 054303-1-8.

    Article  Google Scholar 

  57. M. Kaisermayr, J. Combet, H. Ipser, H. Schicketanz, B. Sepiol, and G. Vogl: Phys. Rev. B, 2000, vol. 61, pp. 12038–44.

    Article  CAS  Google Scholar 

  58. G. Bester, B. Meyer, M. Fahnle, and C.L. Fu: Mater. Sci. Eng. A, 2002, vol. 323, pp. 487–90.

    Article  Google Scholar 

  59. M. Kogachi, T. Haraguchi, and S.M. Kim: Intermetallics, 1998, vol. 6, pp. 499–510.

    Article  CAS  Google Scholar 

  60. T.B. Massalski, H. Okamoto, E.R. Subramanyan, and L. Kacprzak: Binary Phase Diagrams, vol. 1, 2nd ed., 1990, ASM, Materials Park, OH, pp. 147–49.

  61. W. Koster and T. Godecke: Z. Metallkunde, 1980, vol. 71, pp. 765–69.

    Google Scholar 

  62. H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, and B. Sepiol: Mater. Sci. Eng. A, 1997, vols. 239-240, pp. 889–98.

    Article  Google Scholar 

  63. L.N. Larikov, V.V. Geichenko, and V. M. Fal’Chenko: Diffusion in Ordered Alloys, V.S. Kothekar, ed., Oxanian Press, New Delhi, India, 1981.

  64. H.-E. Schaefer, R. Wurschum, M. Sob, T. Zak, W.Z. Yu, W. Eckert, and F. Banhart: Phys. Rev. B, 1990, vol. 41, pp. 11869–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors record their grateful thanks to Prof. Y. Iijima for several interesting discussions on the subject. We would also like to express our appreciations to the key reader and reviewers for constructive criticism and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Tiwari.

Additional information

Manuscript submitted September 22, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, G.P., Mehrotra, R.S. Kirkendall Effect and Mechanism of Self-Diffusion in B2 Intermetallic Compounds. Metall Mater Trans A 43, 3654–3662 (2012). https://doi.org/10.1007/s11661-012-1199-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1199-0

Keywords

Navigation