Skip to main content
Log in

Advanced Procedures for Long-Term Creep Data Prediction for 2.25 Chromium Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A critical review of recent creep studies concluded that traditional approaches such as steady-state behavior, power law equations, and the view that diffusional creep mechanisms are dominant at low stresses should be seriously reconsidered. Specifically, creep strain rate against time curves show that a decaying primary rate leads into an accelerating tertiary stage, giving a minimum rather than a secondary period. Conventional steady-state mechanisms should therefore be abandoned in favor of an understanding of the processes governing strain accumulation and the damage phenomena causing tertiary creep and fracture. Similarly, creep always takes place by dislocation processes, with no change to diffusional creep mechanisms with decreasing stress, negating the concept of deformation mechanism maps. Alternative descriptions are then provided by normalizing the applied stress through the ultimate tensile stress and yield stress at the creep temperature. In this way, the resulting Wilshire equations allow accurate prediction of 100,00 hours of creep data using only property values from tests lasting 5000 hours for a series of 2.25 chromium steels, namely grades 22, 23, and 24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. J.D. Parker: The Grade 22 Low Alloy Steel Handbook, EPRI, Palo Alto, CA, 2005.

  2. NIMS Creep Data Sheet, no. 36B, 2003.

  3. NIMS Creep Data Sheet, no. 11B, 1997.

  4. NIMS Creep Data Sheet, no. 3B, 1986.

  5. NIMS Creep Data Sheet, no. M-4, Metallographic Atlas of Long-Term Crept Materials, 2005.

  6. Boiler and Pressure Vessel Code, ASME, New York, NY, 2004.

  7. NIMS Creep Data Sheet, no. 54, Data Sheets on the Elevated-Temperature Properties of 2.25Cr-1.6W Steel Tubes for Power Boilers and 2.25Cr-1.6W Steel Pipe for High-Temperature Service, 2008.

  8. NIMS Creep Data Sheet, no. 53, Data Sheets on the Elevated-Temperature Properties of 2.25Cr-1Mo-0.3V High Strength Chromium-Molybdenum Alloy Steel Forgings for Pressure Vessels Under High Temperature Service, 2007.

  9. J. Hald: Mater. High Temp., 2004, vol. 41, pp. 41-46.

    Article  Google Scholar 

  10. S.R. Holdsworth, M. Askins, A. Baker, E. Gariboldi, R. Sandstrom, M. Schwiersheer, and S. Spigarelli: Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, I.A. Shibli, S.R. Holdsworth, and G. Merckling, eds., DEStech, London, U.K., 2005, pp. 380–93.

  11. G. Merckling: Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, I.A. Shibli, S.R. Holdsworth, and G. Merckling, eds., DEStech, London, U.K., 2005, pp. 3–19.

  12. J.C Vailant, R. Vandenberghe, B. Hahn, H. Heuser, and C. Jochum: Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, I.A. Shibli, S.R. Holdsworth, and G. Merckling, eds., DEStech, London, U.K., 2005, pp. 87–96.

  13. W. Bendick and J. Gabrel: Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, I.A. Shibli, S.R. Holdsworth, and G. Merckling, eds., DEStech, London, U.K., 2005, pp. 406–18.

  14. K. Maruyama and J.S. Lee: Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, I.A. Shibli, S.R. Holdsworth, and G. Merckling, eds., DEStech, London, U.K., 2005, pp. 372–79.

  15. K. Kimura: Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, I.A. Shibli, S.R. Holdsworth, and G. Merckling, eds., DEStech, London, U.K., 2005, pp. 1009–22.

  16. B. Wilshire and A. Battenbough: Mater. Sci. Eng. A, 2007, vol. A443, pp. 156–66.

    CAS  Google Scholar 

  17. B. Wilshire and P.J. Scharning: Int. J. Press. Vessels. Pip., 2008, vol. 85, pp. 739–43.

    Article  CAS  Google Scholar 

  18. B. Wilshire and P.J. Scharning: Mater. Sci. Technol., 2008, vol. 24, pp. 1–9.

    Article  CAS  Google Scholar 

  19. B. Wilshire and P.J. Scharning: Int. Mater. Rev., 2008, vol. 53, pp. 91–104.

    Article  CAS  Google Scholar 

  20. B. Wilshire and P.J. Scharning: J. Mater. Sci., 2008, vol. 43, pp. 3992–4000.

    Article  CAS  Google Scholar 

  21. K. Sawada, M. Fujitsuka, M. Tabuchi, and K. Kimura: Sec. ECCC Conf on Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, I.A. Shibli and S.R. Holdsworth, eds., DEStech, Zurich, Switzerland, 2009, pp. 79–92.

  22. F.R. Larsson and J. Miller: Trans. ASME, 1952, vol. 74, pp. 765–75.

    Google Scholar 

  23. M.T. Whittaker and B. Wilshire: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4932–38.

    Article  Google Scholar 

  24. M.T. Whittaker and B. Wilshire: Mater. Sci. Tech., 2011, vol. 27, pp. 642–47.

    Article  CAS  Google Scholar 

  25. M.F. Ashby: Acta Metall., 1972, vol. 20, pp. 887–97.

    Article  CAS  Google Scholar 

  26. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, London, U.K., 1982.

  27. R.W. Evans and B. Wilshire: Creep of Metals and Alloys, The Institute of Metals, London, U.K., 1985.

  28. F.R.N. Nabarro: Mater. Sci. Eng. A, 2004, vol. 659A, pp. 387–89.

    Google Scholar 

  29. E. Arzt: Res. Mech., 1991, vol. 31, pp. 399–431.

    Google Scholar 

  30. B. Wilshire and M.T. Whittaker. Acta Mater., 2009, vol. 57, pp. 4115–24.

  31. P.W. Davies, J.D. Richards, and B. Wilshire: The Inst. Met., 1961–1962, vol. 90, pp. 431–34.

  32. R.L. Squires, R.T. Weiner, and M. Phillips. J. Nucl. Mater., 1963, vol. 8, pp. 77–80.

  33. J.E. Harris and R.B. Jones: J. Nucl. Mater., 1963, vol. 10, pp. 360–62.

    Article  CAS  Google Scholar 

  34. J.G. Park, D.Y. Lee, and J. Choi: J. Mater. Sci., 1996, vol. 31, pp. 2719–23.

    Article  CAS  Google Scholar 

  35. M. Ingarashi, M. Yoshizawa, H. Matsuo, O. Miyahara, and A. Iseda: Mater. Sci. Eng. A, 2009, vols. 510–511A, pp. 104–09.

  36. M.F. Ashby and B.F. Dyson: Advances in Fracture Research, S.R. Valluri, ed., Pergamon Press, Oxford, U.K., 1984, pp. 3–30.

  37. F.A. Leckie and D.R. Hayhurst: Acta Metall., 1977, vol. 25, pp. 1059–70.

    Article  Google Scholar 

  38. B. Wilshire and H. Burt: Z. Metallkd., 2005. vol. 96, pp. 552–57.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Whittaker.

Additional information

Manuscript submitted August 18, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittaker, M.T., Wilshire, B. Advanced Procedures for Long-Term Creep Data Prediction for 2.25 Chromium Steels. Metall Mater Trans A 44 (Suppl 1), 136–153 (2013). https://doi.org/10.1007/s11661-012-1160-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1160-2

Keywords

Navigation