Skip to main content
Log in

A Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sigma phase is known to reduce the mechanical properties and corrosion resistance of duplex and superduplex stainless steels. Therefore, heat treatments and welding must be carefully performed so as to avoid the appearance of such a detrimental phase, and clearly, models suitable to faithfully predict σ-phase precipitation are very useful tools. Most fully analytical models are based on thermodynamic calculations whose agreement with experimental results is not always good, so that such models should be used for qualitative purposes only. Alternatively, it is possible to exploit semiempirical models, where time-temperature-transformation (TTT) diagrams are empirically determined for a given alloy and the continuous-cooling-transformation (CCT) diagram is calculated from the TTT diagram. In this work, a semiempirical model for σ-phase precipitation in duplex and superduplex stainless steels, under both isothermal and unisothermal conditions, is proposed. Model parameters are calculated from empirical data and CCT diagrams are obtained by means of the additivity rule, whereas experimental measurements for model validation are taken from the literature. This model gives a satisfactory estimation of σ-phase precipitates during both isothermal aging and the continuous cooling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. MATLAB is a trademark of The MathWorks, Natick, MA.

References

  1. F. Bonollo, A. Tiziani, and P. Ferro: in Duplex Stainless Steels, 1st ed., Iris Alvarez-Armas and Susanne Degallaix-Moreuil, eds., John Wiley & Sons, Inc., Hoboken, NJ, Wiley, Oxford, England, 2009, pp. 141–55.

  2. R. Cervo, P. Ferro, and A Tiziani: J. Mater. Sci., 2010, vol. 45, pp. 4369–77.

    Article  CAS  Google Scholar 

  3. R. Cervo, P. Ferro, A. Tiziani, and F. Zucchi: J. Mater. Sci., 2010, vol. 45, pp. 4378–89.

    Article  CAS  Google Scholar 

  4. I. Zucato, M.C. Moreira, I.F. Machado, and S.M.G. Lebrao: Mater. Res., 2002, vol. 5 (3), pp. 385–89.

    Article  CAS  Google Scholar 

  5. H. Sieurin and R. Sandström: Mater. Sci. Eng. A, 2007, vol. 444, pp. 271–76.

    Article  Google Scholar 

  6. C.-S. Huang and C.-C. Shih: Mater. Sci. Eng., 2005, vol. 402, pp. 66–75.

  7. M.B. Cortie and E.M. Jackson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2477–84.

    Article  CAS  Google Scholar 

  8. A.F. Padilha and R.L Plaut: Duplex Stainless Steels, 1st ed., Iris Alvarez-Armas and Susanne Degallaix-Moreuil, Wiley, Oxford, England, 2009, pp. 115–39.

  9. M.R. El Koussy, I.S. El Mahallawi, W. Khalifa, M.M. Al Dawood, and M. Bueckins. Mater. Sci. Technol., 2004, vol. 20, pp. 375–81.

    CAS  Google Scholar 

  10. Y.S. Ahn and J.P. Kang: Mater. Sci. Technol., 2000, vol. 16, pp. 382–87.

    Article  CAS  Google Scholar 

  11. T.H. Chen, K.L. Weng, and J.R. Yang: Mater. Sci. Eng. A, 2002, vol. 338, pp. 259–70.

    Article  Google Scholar 

  12. J.-O. Nilsson and A. Wilson: Mater. Sci. Technol., 1993, vol. 9 (7), pp. 545–54.

    CAS  Google Scholar 

  13. H. Sieurin and R. Sandström: Eng. Fract. Mech., 2006, vol. 73, pp. 377–90.

    Article  Google Scholar 

  14. A. Dhooge and E. Deleu: Weld. World, 1997, vol. 39, pp. 47–52.

    CAS  Google Scholar 

  15. X. Li, A.P. Miodownik, and N. Saunders: Mater. Sci. Technol., 2002, vol. 18, pp. 861–67.

    Article  CAS  Google Scholar 

  16. Y.J. Kim, L.S. Chumbley, and B. Gleeson: J. Mater. Eng. Perform., 2008, vol. 17 (2), pp. 234–39.

    Article  CAS  Google Scholar 

  17. E. Sheil: Arch. Eisenhüttenwes., 1953, vol. 12, pp. 565–67.

    Google Scholar 

  18. M. Lusk and H.J. Jou: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 287–91.

    Article  CAS  Google Scholar 

  19. A. Wilson and J.-O. Nilsson: Scand. J. Metall., 1996, vol. 25, pp. 178–85.

    CAS  Google Scholar 

  20. J.-O. Nilsson, P. Kangas, T. Karlsson, and A. Wilson: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 35–45.

    Article  CAS  Google Scholar 

  21. J.W. Elmer, T.A. Palmer, and E.D. Specht: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 464–75.

    Article  CAS  Google Scholar 

  22. P. Ferro, R. Cervo, F. Bonollo, and R. Bertelli: Proc. Int. Conf. & Expo Duplex 2007, Grado, Italy, June 18–20, 2007.

  23. Øystein Grong: in Metallurgical Modelling of Welding, 2nd ed., H.K.D.H. Bhadeshia, ed., The Institute of Materials, London, 1994, pp. 387–93.

  24. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, K. Bettahar, and N. Kherrouba: Mater. Sci. Eng. A, 2008, vol. 496, pp. 447–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ferro.

Additional information

Manuscript submitted April 6, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferro, P., Bonollo, F. A Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels. Metall Mater Trans A 43, 1109–1116 (2012). https://doi.org/10.1007/s11661-011-0966-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0966-7

Keywords

Navigation