Skip to main content
Log in

Direct Observations of Sigma Phase Formation in Duplex Stainless Steels Using In-Situ Synchrotron X-Ray Diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The formation and growth of sigma (σ) phase in 2205 duplex stainless steel (DSS) was observed and measured in real time using synchrotron radiation during 10 hour isothermal heat treatments at temperatures between 700 °C and 850 °C. Sigma formed in near-equilibrium quantities during the isothermal holds, starting from a microstructure which contained a balanced mixture of metastable ferrite and austenite. In-situ synchrotron diffraction continuously monitored the transformation, and these results were compared to those predicted by thermodynamic calculations. The data were further analyzed using a modified Johnson–Mehl–Avrami–Kolmogrov (JMAK) approach to determine kinetic parameters for sigma formation over this temperature range. The initial JMAK exponent, n, at low fractions of sigma was found to be approximately 7.0; however, toward the end of the transformation, n decreased to values of approximately 0.75. The change in the JMAK exponent was attributed to a change in the transformation mechanism from discontinuous precipitation with increasing nucleation rate, to growth of the existing sigma phase after nucleation site saturation occurred. Because of this change in mechanism, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMAK equation. While cooling back to room temperature, the partial transformation of austenite resulted in a substantial increase in the ferrite content, but sigma retained its high-temperature value to room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. H.D. Solomon and T.M. Devine: in Duplex Stainless Steels, R.D. Lula, ed., ASM, Metals Park, OH, 1983, pp. 693–756

  2. L. Karlsson: WRC Bull., 1999, p. 438

  3. J.-O. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700

    CAS  Google Scholar 

  4. E.O. Hall, S.H. Algie: Inst. Met., 1966, vol. 11, pp. 61–88

    Google Scholar 

  5. J.-O. Nilsson, P. Kangas, T. Karlsson, A. Wilson: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 35–45

    Article  CAS  Google Scholar 

  6. Y.S. Ahn, J.P. Kang: Mater. Sci. Technol., 2000, vol. 16, pp. 382–88

    CAS  Google Scholar 

  7. J. Li, T. Wu, Y. Riquier: Mater. Sci. Eng., 1994, vol. A174, pp. 149–56

    CAS  Google Scholar 

  8. T.H. Chen, K.L. Weng, J.R. Yang: Mater. Sci. Eng. A, 2002, vol. A338, pp. 259–70

    CAS  Google Scholar 

  9. J.-O. Nilsson, A. Wilson: Mater. Sci. Technol., 1993, vol. 9, pp. 545–54

    CAS  Google Scholar 

  10. Y.S. Ahn, M. Kim, B.H. Jeong: Mater. Sci. Technol., 2002, vol. 18, pp. 383–88

    Article  CAS  Google Scholar 

  11. J. Barcik: Metall. Trans. A, 1983, vol. 14A, pp. 635–41

    Google Scholar 

  12. J. Barcik: Mater. Sci. Technol., 1988, vol. 4, pp. 5–15

    CAS  Google Scholar 

  13. J. Barcik: Metall. Trans. A, 1987, vol. 18A, pp. 1171–77

    CAS  Google Scholar 

  14. A.V. Kington, F.W. Noble: Mater. Sci. Technol., 1995, vol. 11, pp. 268–75

    CAS  Google Scholar 

  15. E. Johnson, Y.-J. Kim, L.S. Chumbley, B. Gleeson: Scripta Mater., 2004, vol. 50, pp. 1351–54

    Article  CAS  Google Scholar 

  16. Y.-J. Kim, L.S. Chumbley, B. Gleeson: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3377–86

    Article  CAS  Google Scholar 

  17. J.-O. Nilsson, T. Huhtala, P. Jonsson, L. Karlsson, A. Wilson: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2196–2208

    CAS  Google Scholar 

  18. J.M. Vitek, S.A. David: Metall. Trans. A, 1987, vol. 18A, pp. 1195–1201

    CAS  Google Scholar 

  19. T.H. Chen, J.R. Yang: Mater. Sci. Eng. A, 2002, vol. 338, pp. 166–81

    Article  Google Scholar 

  20. T.H. Chen, J.R. Yang: Mater. Sci. Eng. A, 2001, vol. 311, pp. 28–41

    Article  Google Scholar 

  21. T.A. Palmer, J.W. Elmer, S.S. Babu: Mater. Sci. Eng. A, 2004, vol. 374, pp. 307–21

    Article  Google Scholar 

  22. T.A. Palmer, J.W. Elmer, Joe Wong: Sci. Technol. Welding Joining, 2002, vol. 7(3), pp 159–71

    Article  CAS  Google Scholar 

  23. J.W. Elmer, T.A. Palmer, S.S. Babu, E.D. Specht: Mater. Sci. Eng. A, 2004, vol. 391 (1–2), pp. 104–13

    Google Scholar 

  24. J.W. Elmer, T.A. Palmer, S.S. Babu, E.D. Specht: Scripta Mater., 2005, vol. 52(10), pp. 1051–56

    Article  CAS  Google Scholar 

  25. JPOWD: Materials Data Inc., Livermore, CA, Build 11/17/2005

  26. H.L. Yakel: Acta Crystallogr., Sect. B: Struct. Sci., 1983, vol. 39, pp. 20–28

    Article  Google Scholar 

  27. J.W. Elmer, T.A. Palmer, W. Zhang, and T. DebRoy: 7th Int. Conf. on Trends in Welding Research, Pine Mountain, GA, ASM INTERNATIONAL, 2005, Materials Park, OH, 2005, pp. 901–10

  28. J.W. Christian: The Theory of Transformations in Metals and Alloys, Part I, 2nd ed., Pergamon, Oxford, United Kingdom, 1975, pp. 525–48

    Google Scholar 

  29. B. Josefsson, J.-O. Nilsson, and A. Wilson: in Duplex Stainless Steel ‘91, J. Charles and S. Bernhardsson, eds., Les Editions de Physique, Beaune, Bourgogne, France, 1991, vol. 1, pp. 67–78

  30. C.-S. Huang, C.-C. Shih: Mater. Sci. Eng. A, 2005, vol. 402, pp. 66–75

    Article  Google Scholar 

  31. O. Grong: Metallurgical Modeling of Welding, The Institute of Materials, London, 1994

    Google Scholar 

  32. C.J. Smithells, E.A. Brandes, G.B. Brook: Smithells Metal Reference Book, 7th ed., Butterworth-Heinemann Ltd., Oxford, United Kingdom, 1992

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The LLNL portion of this work was performed under the auspices of the United States Department of Energy (DOE), Lawrence Livermore National Laboratory, under Contract No. W-7405-ENG-48. The ORNL portion of this work was sponsored by the United States DOE, Division of Materials Sciences and Engineering, under Contract No. DE-AC05-00OR22725 with UT–Battelle, LLC. The UNICAT facility at the APS is supported by the United States DOE under Award No. DEFG02-91ER45439, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana–Champaign, the Oak Ridge National Laboratory (U.S. DOE Contract No. DE-AC05-00OR22725 with UT–Battelle LLC), the National Institute of Standards and Technology (U.S. Department of Commerce), and UOP LLC. The APS is supported by the U.S. DOE, Basic Energy Sciences Office of Science, under Contract No. W-31-109-ENG-38. The authors thank Professor T. DebRoy, Pennsylvania State University, for reviewing this article and adding helpful suggestions and also thank Mr. Jackson Go, LLNL, for performing the optical metallography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Elmer.

Additional information

Manuscript submitted July 24, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmer, J.W., Palmer, T.A. & Specht, E.D. Direct Observations of Sigma Phase Formation in Duplex Stainless Steels Using In-Situ Synchrotron X-Ray Diffraction. Metall Mater Trans A 38, 464–475 (2007). https://doi.org/10.1007/s11661-006-9076-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9076-3

Keywords

Navigation