Skip to main content
Log in

Densification, Microstructure, and Wear Property of In Situ Titanium Nitride-Reinforced Titanium Silicide Matrix Composites Prepared by a Novel Selective Laser Melting Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work presents the densification behavior, microstructural features, microhardness, and wear property of in situ TiN/Ti5Si3 composite parts prepared by a novel Selective Laser Melting (SLM) process. The occurrence of balling phenomenon at a low laser energy density combined with a high scan speed and the formation of thermal cracks at an excessive laser energy input generally decreased densification rate. The in situ-formed TiN reinforcing phase experienced a successive morphological change: an irregular polyangular shape—a refined near-round shape—a coarsened dendritic shape, as the applied laser energy density increased. The variations in liquid-solid wettability and intensity of Marangoni convection within laser molten pool accounted for the different growth mechanisms of TiN reinforcement. The TiN/Ti5Si3 composite parts prepared under the optimal SLM conditions had a near-full 97.7 pct theoretical density and a uniform microhardness distribution with a significantly increased average value of 1358.0HV0.3. The dry sliding wear tests revealed that a considerably low friction coefficient of 0.19 without any apparent fluctuation and a reduced wear rate of 6.84 × 10−5mm3/Nm were achieved. The enhanced wear resistance was attributed to the formation of adherent strain-hardened tribolayer covered on the worn surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Mitra: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1629–41.

    Article  CAS  Google Scholar 

  2. R. Mitra, V.V. Rama Rao: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1665–75.

    Article  CAS  Google Scholar 

  3. J.H. Shim, J.S. Byun, and Y.W. Cho: J. Am. Ceram. Soc., 2004, vol. 87, pp. 1853–58.

    Article  CAS  Google Scholar 

  4. L.J. Wang, W. Jiang, C. Qin, and L.D. Chen: J. Mater. Sci., 2006, vol. 41, pp. 3831–35.

    Article  CAS  Google Scholar 

  5. I.J. Shon, H.C. Kim, D.H. Rho, and Z.A. Munir: Mater. Sci. Eng. A, 1999, vol. 269, pp. 129–35.

    Article  Google Scholar 

  6. J.L. Li, D.L. Jiang, and S.H. Tan: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 551–58.

    Article  CAS  Google Scholar 

  7. S.C. Tjong: Adv. Eng. Mater., 2007, vol. 9, pp. 639–52.

    Article  CAS  Google Scholar 

  8. A. Gåård, P. Krakhmalev, and J. Bergström: J. Alloys Compd., 2006, vol. 421, pp. 166–71.

    Article  Google Scholar 

  9. D.D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Surf. Coat Technol., 2011, vol. 205, pp. 3285–92.

    Article  CAS  Google Scholar 

  10. J.F. Shackelford and W. Alexander: CRC Materials Science and Engineering Handbook, 3rd ed., CRC Press, Boca Raton, FL, 2000.

    Book  Google Scholar 

  11. M.A. Thein, L. Lu, and M.O. Lai: Mater. Sci. Eng. A, 2010, vol. 528, pp. 239–46.

    Article  Google Scholar 

  12. V. Abbasi Chianeh, H.R. Madaah Hosseini, and M. Nofar: J. Alloys Compd., 2009, vol. 473, pp. 127–32.

    Article  CAS  Google Scholar 

  13. C.L. Yeh and G.S. Teng: J. Alloys Compd., 2007, vol. 429, pp. 126–32.

    Article  CAS  Google Scholar 

  14. D. Horvitz and I. Gotman: Acta Mater., 2002, vol. 50, pp. 1961–71.

    Article  CAS  Google Scholar 

  15. Y.F. Yang, H.Y. Wang, J. Zhang, R.Y. Zhao, Y.H. Liang, and Q.C. Jiang: J. Am. Ceram. Soc., 2008, vol. 91, pp. 2736–39.

    Article  CAS  Google Scholar 

  16. S. Kumar, V. Subramaniya Sarma, and B.S. Murty: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 242–54.

    Article  CAS  Google Scholar 

  17. R. Hadian, M. Emamy, and J. Campbell: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 822–32.

    Article  CAS  Google Scholar 

  18. B. Zheng, T. Topping, J.E. Smugeresky, Y. Zhou, A. Biswas, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 568–73.

    Article  CAS  Google Scholar 

  19. B. Zheng, J.E. Smugeresky, Y. Zhou, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1196–205.

    Article  CAS  Google Scholar 

  20. B.V. Krishna, S. Bose, and A. Bandyopadhyay: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1096–1103.

    Article  CAS  Google Scholar 

  21. W.P. Liu and J.N. DuPont: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3397–406.

    Article  CAS  Google Scholar 

  22. R. Banerjee, A. Genç, P.C. Collins, and H.L. Fraser: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2143–52.

    Article  CAS  Google Scholar 

  23. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: CIRP Ann. Manuf. Technol., 2007, vol. 56, pp. 730–59.

    Article  Google Scholar 

  24. D. Bourell, M. Wohlert, N. Harlan, S. Das, and J. Beaman: Adv. Eng. Mater., 2002, vol. 4, pp. 663–69.

    Article  CAS  Google Scholar 

  25. S. Das: Adv. Eng. Mater., 2003, vol. 5, pp. 701–11.

    Article  CAS  Google Scholar 

  26. A. Simchi, F. Petzoldt, and H. Pohl: Int. J. Powder Metall., 2001, vol. 37, pp. 49–61.

    CAS  Google Scholar 

  27. S. Kumar and J.P. Kruth: Mater. Des., 2010, vol. 31, pp. 850–56.

    Article  CAS  Google Scholar 

  28. D.D. Gu and W. Meiners: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7585–92.

    Article  Google Scholar 

  29. D.D. Gu and Y.F. Shen: Acta Metall. Sin., 2010, vol. 46, pp. 761–68.

    Article  CAS  Google Scholar 

  30. D.D. Gu and Y.F. Shen: J. Alloys Compd., 2009, vol. 473, pp. 107–15.

    Article  CAS  Google Scholar 

  31. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon: Acta Mater., 2003, vol. 51, pp. 1651–62.

    Article  CAS  Google Scholar 

  32. A. Simchi and H. Pohl: Mater. Sci. Eng. A, 2003, vol. 359, pp. 119–28.

    Article  Google Scholar 

  33. Q.L. Huang, J. Cai, W. Pan, J. Chen, and J. Lian: Mater. Lett., 1997, vol. 31, pp. 221–25.

    Article  CAS  Google Scholar 

  34. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., VCH, New York, NY, 1993.

    Google Scholar 

  35. D.D. Gu, Y.F. Shen, and Z.J. Lu: Mater. Lett., 2009, vol. 63, pp. 1577–79.

    Article  CAS  Google Scholar 

  36. K. Arafune and A. Hirata: J. Cryst. Growth, 1999, vol. 197, pp. 811–17.

    Article  CAS  Google Scholar 

  37. X.B. Zhou and J.Th.M. De Hosson: Acta Mater., 1996, vol. 44, pp. 421–26.

    Article  CAS  Google Scholar 

  38. Z.F. Yuan, J.J. Ke, and J. Li: Surface Tension of Metals and Alloys, 1st ed., Science Press, Beijing, China, 2006.

    Google Scholar 

  39. I. Takamichi and I.L.G. Roderick: The Physical Properties of Liquid Metals, 1st ed., Clarendon Press, Oxford, UK, 1993.

    Google Scholar 

  40. H.J. Niu and I.T.H. Chang: Scripta Mater., 1999, vol. 41, pp. 1229–34.

    Article  CAS  Google Scholar 

  41. H.H. Zhu, L. Lu, and J.Y.H. Fuh: Mater. Sci. Eng. A, 2004, vol. 371, pp. 170–77.

    Article  Google Scholar 

  42. P. Mercelis and J.P. Kruth: Rapid Prototyping J., 2006, vol. 12, pp. 254–65.

    Article  Google Scholar 

  43. B.S. Kim, S.J. Hong, and D.J. Kim: Metall. Mater. Int., 2010, vol. 16, pp. 565–68.

    Article  CAS  Google Scholar 

  44. K. Tsukuma, M. Shimada, and M. Koizumi: Ceram. Bull., 1981, vol. 60, pp. 910–12.

    CAS  Google Scholar 

  45. M.F. Wani, Z.A. Khan, and M. Hadfield: J. Adv. Res. Mech. Eng., 2010, vol. 1, pp. 52–59.

    Google Scholar 

  46. A. Jain, B. Basu, B.V. Manoj, K. Harshavardhan, and J. Sarkar: Acta Mater., 2010, vol. 58, pp. 2313–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One author (D.D.G.) gratefully appreciates the fellowship of the Alexander von Humboldt Foundation for sponsoring the research stay in Germany. Financial supports from the National Natural Science Foundation of China (No. 51054001 and No. 51104090), the Aeronautical Science Foundation of China (No. 2010ZE52053), the Natural Science Foundation of Jiangsu Province (No. BK2009374), and the NUAA Research Funding (No. NS2010156) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Additional information

Manuscript submitted March 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, D., Hong, C. & Meng, G. Densification, Microstructure, and Wear Property of In Situ Titanium Nitride-Reinforced Titanium Silicide Matrix Composites Prepared by a Novel Selective Laser Melting Process. Metall Mater Trans A 43, 697–708 (2012). https://doi.org/10.1007/s11661-011-0876-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0876-8

Keywords

Navigation