Skip to main content
Log in

A Probabilistic Model of Fatigue Strength Controlled by Porosity Population in a 319-Type Cast Aluminum Alloy: Part I. Model Development

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The very high-cycle fatigue behavior of a 319-type cast aluminum alloy was investigated using ultrasonic fatigue instrumentation operating at 20 kHz. An endurance limit was demonstrated in the lifetime regime beyond 107 cycles. Accordingly, the fatigue strength at 108 cycles was determined using the staircase test method. Large pores at or close to the specimen surface or in the specimen interior were responsible for crack initiation in all specimens, and the staircase results were associated with both size and location of the initiating pores through a critical stress intensity factor for fatigue crack growth. Based on the experimental observations, a probabilistic model was developed to establish the relationship between the porosity population and the fatigue strength of the alloy. Good agreement was obtained between the modeling results and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. MatLab is a trademark of The MathWorks Inc., Novi, MI, USA

References

  1. C. Nyahumwa, N.R. Green, J. Campbell: Metall. Mater. Trans. A, 2001, 32A: 349–58

    Article  CAS  Google Scholar 

  2. J.M. Boileau, J.E. Allison: Metall. Mater. Trans. A, 2003, 34A:1807–20

    Article  CAS  Google Scholar 

  3. J.M. Boileau, J.W. Zindel, J.E. Allison: SAE Technical Paper Series, 1997, 970019

  4. M.J. Caton, J.W. Jones, J.E. Allison: Mater. Sci. Eng. A, 2001, 314:81–85

    Article  Google Scholar 

  5. Y.X. Gao, J.Z. Yi, P.D. Lee, T.C. Lindley: Fatigue Fract. Eng. Mater. Struct., 2004, 27: 559–70

    Article  CAS  Google Scholar 

  6. Q.G. Wang: J. Mater. Manufacturing, 2004, 112:396–404

    Google Scholar 

  7. J.Z. Yi, Y.X. Gao, P.D. Lee, T.C. Lindley: Metall. Mater. Trans. B, 2006, 37B: 301–11

    CAS  Google Scholar 

  8. M.J. Couper, A.E. Neeson, J.R. Griffiths: Fatigue Fract. Eng. Mater. Struct., 1990, 13:213–27

    Article  Google Scholar 

  9. K. Shiozawa, Y. Tohda, S.-M. Sun: Fatigue Fract. Eng. Mater. Struct., 1997, 20: 237–47

    Article  CAS  Google Scholar 

  10. M.J. Caton, J.W. Jones, J.M. Boileau, J.E. Allison: Metall. Mater. Trans. A, 1999, 30A: 3055–68

    Article  CAS  Google Scholar 

  11. M.J. Caton, J.W. Jones, H. Mayer, S. Stanzl-Tschegg, J.E. Allison: Metall. Mater. Trans. A, 2003, 34A:33–41

    Article  CAS  Google Scholar 

  12. B. Skallerud, T. Iveland, G. Harkegard: Eng. Fract. Mech., 1993, 44:857–74

    Article  Google Scholar 

  13. Y. Murakami: Metal Fatigue: Effect of Small Defects and Nonmetallic Inclusions, Elsevier Science Ltd., Boston, MA, 2002, p. 369

    Google Scholar 

  14. Y.X. Gao, J.Z. Yi, P.D. Lee, T.C. Lindley: Acta Mater., 2004, 52: 5435–49

    Article  CAS  Google Scholar 

  15. H. Mayer: Int. Mater. Rev., 1999, 44: 1–34

    CAS  Google Scholar 

  16. X. Zhu, A. Shyam, J.W. Jones, H. Mayer, J.V. Lasecki, J.E. Allison: Int. J. Fatigue, 3rd Int. Conf. on Very High Cycle Fatigue (VHCF-3), 2006, 28:1566–71

    CAS  Google Scholar 

  17. J.A. Collins: Failure of Materials in Mechanical Design, John Wiley & Sons, New York, NY, 1981, pp. 383–88

    Google Scholar 

  18. C.C. Engler-Pinto, Jr., J.V. Lasecki, R.J. Frisch, Sr., M.A. DeJack, and J.E. Allison: SAE Technical Paper Series, 2005, 2005-01-0802

  19. Y. Murakami, M. Endo: Int. J. Fatigue, 1994, 16:163–82

    Article  CAS  Google Scholar 

  20. K. Gall, M.F. Horstemeyer, B.W. Degner, D.L. McDowell, J. Fan: Int. J. Fract., 2001, 108:207–33

    Article  CAS  Google Scholar 

  21. J. Cheong: Master’s Thesis, Imperial College, London, United Kingdom, 2002

  22. S.G. Lee, A.M. Gokhale, A. Sreeranganathan: Mater. Sci. Eng. A, 2006, 427:92–98

    Article  CAS  Google Scholar 

  23. R.L. Fullman: Trans. AIME, 1953, 197:447–52

    CAS  Google Scholar 

  24. E.E. Underwood: Quantitative Stereology, Addison-Wesley, London, 1970, pp. 109–45

    Google Scholar 

  25. J.E. Spowart, B. Maruyama, D.B. Miracle: Mater. Sci. Eng. A, 2001, 307:51–66

    Article  Google Scholar 

  26. Q.G. Wang, D. Apelian, D.A. Lados: J. Light Met., 2001, 1: 73–84

    Article  CAS  Google Scholar 

  27. J.Z. Yi, Y.X. Gao, P.D. Lee, H.M. Flower, T.C. Lindley: Metall. Mater. Trans. A, 2003, 34A: 1879–90

    Article  CAS  Google Scholar 

  28. H. Mayer, M. Papakyriacou, B. Zettl, S.E. Stanzl-Tschegg: Int. J. Fatigue, 2003, 25:245–56

    Article  CAS  Google Scholar 

  29. C.C. Engler-Pinto, Jr., R.J. Frisch, Sr., J.V. Lasecki, and J.E. Allison: SAE Technical Paper Series, 2006, 2006–01–0540

  30. X. Zhu, J.Z. Yi, J.W. Jones, and J.E. Allison: Fatigue 2006—9th Int. Congr. on Fatigue, Atlanta, GA, 2006

  31. J.A. Collins: Failure of Materials in Mechanical Design, John Wiley & Sons, New York, NY, 1981, p. 629

    Google Scholar 

  32. J.-Y. Buffiere, S. Savelli, P.H. Jouneau, E. Maire, R. Fougeres: Mater. Sci. Eng., 2001, A316:115–26

    CAS  Google Scholar 

  33. Q.G. Wang, D. Apelian, D.A. Lados: J. Light Met., 2001, 1:85–97

    Article  Google Scholar 

  34. J.C. Ting, V. Frederick, F.V. Lawrence: Fatigue Fract. Eng. Mater. Struct., 1993, 16: 631–47

    Article  CAS  Google Scholar 

  35. M.E. Seniw, J.G. Conley, M.E. Fine: Mater. Sci. Eng. A, 2000, 285: 43–48

    Article  Google Scholar 

  36. M.J. Caton, J.W. Jones, and J.E. Allison, in Fatigue Crack Growth Thresholds, Endurance Limits, and Design, ASTM STP 1732, J.C.J. Newman and R.S. Piascik, eds., ASTM, Philadelphia, PA, 2000, pp. 285–303

  37. M.J. Caton, J.W. Jones, J.M. Boileau, J.E. Allison: Metall. Mater. Trans. A, 1999, 30A: 3055–68

    Article  CAS  Google Scholar 

  38. A. Shyam, J.E. Allison, J.W. Jones: Acta Mater., 2005, 53: 1499–1509

    Article  CAS  Google Scholar 

  39. M.J. Caton: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 2000

  40. S.E. Stanzl-Tschegg, H.R. Mayer, E.K. Tschegg, A. Beste: Int. J. Fatigue, 1993, 15: 311–16

    Article  CAS  Google Scholar 

  41. M.J. Couper, J.R. Griffiths: Fatigue Fract. Eng. Mater. Struct., 1990, 13:615–24

    Article  Google Scholar 

  42. R.W. Hamilton, D. See, S. Butler, P.D. Lee: Mater. Sci. Eng. A, 2003, 343:290–300

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by the United States National Science Foundation (Grant No. DMR 0211067) and Ford Motor Company is gratefully acknowledged. The authors thank Dr. J. Zindel and L. Godlewski for their assistance with the casting of the materials; Christopher J. Torbet for his technical assistance; and Charles Annis, P.E., for comments on probabilistic modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.Z. Yi.

Additional information

Manuscript submitted: May 31, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Yi, J., Jones, J. et al. A Probabilistic Model of Fatigue Strength Controlled by Porosity Population in a 319-Type Cast Aluminum Alloy: Part I. Model Development. Metall Mater Trans A 38, 1111–1122 (2007). https://doi.org/10.1007/s11661-006-9070-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9070-9

Keywords

Navigation