Skip to main content
Log in

A Transient Thermal Model for Friction Stir Weld. Part II: Effects of Weld Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In Part II of this series of articles, the transient thermal model, which was introduced in Part I, is used to explore the effects of welding conditions on the heat generation and temperature. FSW of the 6061-T651 aluminum alloy is modeled to demonstrate the model. The following two steps are adopted to study the influence of welding conditions on the heat generation and temperature. First, the thermal model is used to compute the heat generation and temperature for different welding conditions, the calculated results are compared with the reported experimental temperature, and a good agreement is observed. Second, the analytical method is used to explore the approximate functions describing the effect of welding conditions on the heat generation and temperature. Based on the computed results, we discuss the relationship between the welding conditions, heat generation, temperature, and friction coefficient, and propose a relationship map between them for the first time at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  2. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton: Scripta. Mater., 1997, vol. 36, pp. 69–75.

    Article  CAS  Google Scholar 

  3. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingle: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.

    Article  CAS  Google Scholar 

  4. Y.S. Sato, H. Kokawa, M. Enmoto, and S. Jogan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2429–38.

    Article  CAS  Google Scholar 

  5. Y.S. Sato, M. Urata, and H. Kokawa: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 625–35.

    Article  Google Scholar 

  6. P. Cavaliere, G. Campanile, F. Panella, and A. Squillace: J. Mater. Process. Technol., 2006, vol. 5, pp. 263–70.

    Article  Google Scholar 

  7. W.B. Lee, Y.M. Yeon, and S.B. Jung: Mater. Trans., 2004, vol. 45, pp. 1700–05.

    Article  CAS  Google Scholar 

  8. S.G. Lim, S.S. Kim, C.G. Lee, and S.J. Kim: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2829–35.

    Article  CAS  Google Scholar 

  9. S.R. Ren, Z.Y. Ma, and L.Q. Chen: Scripta Mater., 2007, vol. 56, pp. 69–72.

    Article  CAS  Google Scholar 

  10. A. Scialpi, L.A.C. De Filippis, and P. Cavaliere: Mater. Des., 2007, vol. 28, pp. 1124–29.

    Article  CAS  Google Scholar 

  11. H. Fujii, L. Cui, M. Maeda, and K. Nogi: Mater. Sci. Eng. A, 2006, vol. A419, pp. 25–31.

    CAS  Google Scholar 

  12. F.C. Liu and Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2378–88.

    Article  CAS  Google Scholar 

  13. H.B. Schmidt and J.H. Hattel: Scripta Mater., 2008, vol. 58, pp. 332–37.

    Article  CAS  Google Scholar 

  14. J.H. Kim, F. Barlat, C. Kim, and K. Chung: Metall. Mater. Int., 2009, vol. 15, pp. 125–32.

    Article  Google Scholar 

  15. S. Xu, X. Deng, and A.P. Reynolds: Sci. Technol. Weld. Join., 2001, vol. 6, pp. 191–93.

    Article  Google Scholar 

  16. H. Schmidt and J. Hattel: Model. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 77–93.

    Article  Google Scholar 

  17. Q.Z. Zhang, L.W. Zhang, W.W. Liu, X.G. Zhang, W.H. Zhu, and S. Qu: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 737–43.

    Article  Google Scholar 

  18. Z. Zhang and H.W. Zhang: Int. J. Adv. Manuf. Technol., 2008, vol. 37, pp. 279–93.

    Article  Google Scholar 

  19. R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy: Acta Mater., 2007, vol. 55, pp. 883–95.

    Article  CAS  Google Scholar 

  20. A. Arora, R. Nandan, A.P. Reynolds, and T. DebRoy: Scripta Mater., 2009, vol. 60, pp. 13–16.

    Article  CAS  Google Scholar 

  21. A.P. Reynolds, W. Tang, Z. Khandkar, J.A. Khan, and K. Lindner: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 190–99.

    Article  CAS  Google Scholar 

  22. Y.J. Chao and X. Qi: Proc. 1st Int. Symp. on Friction Stir Welding, TWI, Thousand Oaks, CA, June 1999, pp. 31–38.

  23. Ø. Frigaard, Ø. Grong, and O.T. Midling: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1189–98.

    Article  CAS  Google Scholar 

  24. M. Song and R. Kovacevic: Int. J. Mach. Tools. Manuf., 2003, vol. 43, pp. 605–15.

    Article  Google Scholar 

  25. M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 165–74.

    Article  Google Scholar 

  26. H. Schmidt, J. Hattel, and J. Wert: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 143–57.

    Article  Google Scholar 

  27. H. Schmidt and J. Hattel: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 176–86.

    Article  Google Scholar 

  28. M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, and H. Shercliff: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2183–93.

    Article  CAS  Google Scholar 

  29. X.X. Zhang, B.L. Xiao, and Z.Y. Ma: Metall. Mater. Trans. A. DOI: 10.1007/s11661-011-0729-5.

  30. P. Colegrove, M. Pinter, D. Graham, and T. Miller: Proc. 2nd Int. Symp. on Friction Stir Welding, TWI, Gothenburg, Sweden, June 2000, pp. 26–28.

  31. Q. Shi, T. Dickerson, and H.R. Shercliff: Proc. 4th Int. Symp. on Friction Stir Welding, TWI, Park City, UT, May 2003, pp. 14–16.

  32. Recommended Values of Thermophysical Properties for Selected Commercial Alloys, C.M. Kenneth, ed., Woodhead Publishing Ltd., Cambridge, England, 2002.

  33. J.H. Yan, M.A. Sutton, and A.P. Reynolds: Sci. Technol. Weld Join., 2005, vol. 10, pp. 725–36.

    Article  CAS  Google Scholar 

  34. T. Long, W. Tang, and A.P. Reynolds: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 311–17.

    Article  CAS  Google Scholar 

  35. K. Mundra, T. DebRoy, and K.M. Kelkar: Numer. Heat Transfer A, 1996, vol. 29, pp. 115–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of (a) the National Outstanding Young Scientist Foundation of China under Grant No. 50525103 and (b) the Hundred Talents Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ma.

Additional information

Manuscript submitted October 18, 2010.

Nomenclature

Nomenclature

D p , D s :

pin, shoulder diameter (mm)

E :

weld heat input (J/mm)

h p :

pin length (mm)

K :

curve fitting slope

L :

characteristic length (mm)

M :

torque (Nm)

P :

pressure (Pa)

q :

heat generation rate (J mm−3)

Q P , Q s , Q total :

pin, shoulder and total heat generation (W)

R p , R s :

pin, shoulder radius (mm)

r :

radius (mm)

T :

temperature (K)

T melt :

melting point (K)

T p :

temperature in pin/matrix interface (K)

\( \overline{{T_{p} }} \) :

temperature (K), \( T_{{p, { \max }}} < \overline{{T_{p} }} < T_{{p, { \min }}} \)

T s :

temperature in shoulder/matrix interface (K)

\( \overline{{T_{s} }} \) :

temperature (K), \( T_{{s, { \max }}} < \overline{{T_{s} }} < T_{{s, { \min }}} \)

\( T_{\text{center}}^{s} \) :

temperature at the SC (K)

\( T_{\text{center}}^{p} \) :

temperature at the PC (K)

t d :

dissolution time (s)

v :

advancing speed (mm min−1)

x,y,z :

coordinate axes

β :

pin contact coefficient for treaded pin

μ 0 :

curve fitting intercept

μ :

comprehensive friction coefficient

\( \theta \) :

angle (rad)

\( \omega \) :

rotation rate (rpm)

\( \pi \) :

Pi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.X., Xiao, B.L. & Ma, Z.Y. A Transient Thermal Model for Friction Stir Weld. Part II: Effects of Weld Conditions. Metall Mater Trans A 42, 3229–3239 (2011). https://doi.org/10.1007/s11661-011-0730-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0730-z

Keywords

Navigation