Skip to main content
Log in

Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High entropy alloys are multicomponent alloys, which consist of five or more elements in equiatomic or nearly equiatomic concentrations. These materials are hypothesized to show significantly decreased self-diffusivities. For the first time, diffusion of all constituent elements in equiatomic CoCrFeNi and CoCrFeMnNi single crystals and additionally solute diffusion of Mn in the quaternary alloy is investigated using the radiotracer technique, thereby the tracer diffusion coefficients of 57Co, 51Cr, 59Fe, 54Mn, and 63Ni are determined at a temperature of 1373 K. The components are characterized by significantly different diffusion rates, with Mn being the fastest element and Ni and Co being the slowest ones. Furthermore, solute diffusion of Cu in the CoCrFeNi single crystal is investigated in the temperature range of 973–1173 K using the 64Cu isotope. In the quaternary alloy, Cu is found to be a fast diffuser at the moderate temperatures below 1273 K and its diffusion rate follows the Arrhenius law with an activation enthalpy of about 149 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. B.S. Murty, J.W. Yeh, and S. Ranganathan: High Entropy Alloys (Elsevier, London, 2014).

    Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  3. F. Zhang, C. Zhang, S.K. Chen, J. Zhu, W.S. Cao, and U.R. Kattner: An understanding of high entropy alloys from phase diagram calculations. Calphad 45, 1–10 (2014).

    Article  Google Scholar 

  4. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater 100, 90–97 (2015).

    Article  CAS  Google Scholar 

  5. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 96, 258–268 (2015).

    Article  CAS  Google Scholar 

  6. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kubenová, D. Raabe, G. Eggeler, and E.P. George: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater 112, 40–52 (2016).

    Article  CAS  Google Scholar 

  7. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, and H.Z. Fu: Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory highentropy alloy. Mater. Sci. Eng., A 651, 698–707 (2016).

    Article  CAS  Google Scholar 

  8. H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H-J. Christ, and M. Heilmaier: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd 661, 206–215 (2016).

    Article  CAS  Google Scholar 

  9. D.H. Lee, M.Y. Seok, Y. Zhai, I.C. Choi, J. He, Z. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J.I. Jang: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater 109, 314–322 (2016).

    Article  CAS  Google Scholar 

  10. L. Zhang, P. Yu, H. Cheng, H. Zhang, H. Diao, Y. Shi, B. Chen, P. Chen, R. Feng, J. Bai, Q. Jing, M. Ma, P.K. Liaw, G. Li, and R. Liu: Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 47, 1–5 (2016).

    Article  Google Scholar 

  11. Y. Ma, Y.H. Feng, T.T. Debela, G.J. Peng, and T.H. Zhang: Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Met. Hard Mater. 54, 395–400 (2016).

    Article  CAS  Google Scholar 

  12. T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, and H. Wang: The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater. Lett. 164, 344–347 (2016).

    Article  CAS  Google Scholar 

  13. W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai: The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950 °C in various oxygencontaining atmospheres. Corros. Sci. 108, 209–214 (2016).

    Article  CAS  Google Scholar 

  14. G. Laplanche, U.F. Volkert, G. Eggeler, and E.P. George: Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met 85, 629–645 (2016).

    Article  CAS  Google Scholar 

  15. G.R. Holcomb, J. Tylczak, and C. Carney: Oxidation of CoCrFeMnNi high entropy alloys. JOM 67, 2326–2339 (2015).

    Article  CAS  Google Scholar 

  16. R.A. Shaginyan, N.A. Krapivka, S.A. Firstov, N.I. Danilenko, and I.V. Serdyuk: Superhard vacuum coatings based on high-entropy alloys. Powder Metall. Met. Ceram. 54, 725–730 (2016).

    Article  Google Scholar 

  17. E.J. Pickering and N.G. Jones: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 1–20 (2016).

    Article  Google Scholar 

  18. D.B. Miracle: High-entropy alloys: A current evaluation of founding ideas and core effects and exploring “nonlinear alloys”. JOM 69, 2130–2136 (2017).

    Article  Google Scholar 

  19. S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd 662, 361–367 (2016).

    Article  CAS  Google Scholar 

  20. K.Y. Tsai, M.H. Tsai, and J.W. Yeh: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61, 4887–4897 (2013).

    Article  CAS  Google Scholar 

  21. K. Kulkarni and G.P.S. Chauhan: Investigations of quaternary interdiffusion in a constituent system of high entropy alloys. AIP Adv. 5, 097162 (2015).

    Article  Google Scholar 

  22. J. Dabrowa, W. Kucza, G. Cieslak, T. Kulik, M. Danielewski, and J.W. Yeh: Interdiffusion in the fcc-structured Al–Co–Cr–Fe–Ni high entropy alloys: Experimental studies and numerical simulations. J. Alloys Compd 674, 455–462 (2016).

    Article  CAS  Google Scholar 

  23. M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, and S.V. Divinski: Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 994–1001 (2016).

    Article  CAS  Google Scholar 

  24. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Scientific Reports 7, 12273 (2017).

    Article  Google Scholar 

  25. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater 146, 211–224 (2018).

    Article  CAS  Google Scholar 

  26. A. Paul: A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems. Philos. Mag 93, 2297–2315 (2013).

    Article  CAS  Google Scholar 

  27. T.R. Paul, I.V. Belova, and G.E. Murch: Analysis of diffusion in high entropy alloys. Mater Chem Phys 210, 301–308 (2018).

    Article  CAS  Google Scholar 

  28. H.R. Lemmer, O.J.A. Segaert, and M.A. Grace: The decay of cobalt 57. Proc. Phys. Soc., London, Sect. A 68, 701–708 (1955).

    Article  Google Scholar 

  29. S. Ofer and R. Wiener: Decay of Cr 51. Phys. Rev. 107, 1639–1641 (1957).

    Article  CAS  Google Scholar 

  30. R.L. Heath, C.W. Reich, and D.G. Proctor: Decay of 45-day Fe 59. Phys. Rev. 118, 1082 (1960).

    Article  CAS  Google Scholar 

  31. C.M. Lederer and V.S. Shirley: Table of Isotopes, 7th ed. (Wiley, New York, 1978).

    Google Scholar 

  32. J.F. Ziegler, D. Ziegler, and J.P. Biersack: SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).

    Article  CAS  Google Scholar 

  33. M.-M. Bé, V. Chisté, C. dulieu, X. Mougeot, V.P. Chechev, N.K. Kuzmenko, F.G. Kondev, A. Luca, M. Galán, A.L. Nichols, A. Arinc, A. Pearce, X. Huang, B. Wang: Table of Radionuclides, Vol. 6 — A = 22 to 242. (Bureau International Des Poids Et Mesures, Sèvres Cedex, France, 2011); pp. 13–18.

    Google Scholar 

  34. H. Wolf, F. Wagner, and T. Wichert: Isolde collaboration, anomalous diffusion profiles of Ag in CdTe due to chemical self-diffusion. Phys. Rev. Lett. 94, 125901 (2005).

    Article  CAS  Google Scholar 

  35. H. Mehrer: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2007); p. 53.

    Book  Google Scholar 

  36. A. Paul, T. Laurila, V. Vuorinen, and S. Divinski: Themodynamics, Diffusion and Kirkendall Effect in Solids (Springer, Switzerland, 2014).

    Book  Google Scholar 

  37. F. Hergemöller, M. Wegner, M. Deicher, H. Wolf, F. Brenner, H. Hutter, R. Abart, and N.A. Stolwijk: Potassium self-diffusion in a K-rich single-crystal alkali feldspar. Phys. Chem. Miner. 44, 345–351 (2017).

    Article  Google Scholar 

  38. A. Strohm, T. Voss, W. Frank, P. Laitinen, and J. Räisänen: Self-diffusion of 71Ge and 31Si in Si–Ge alloys. Z. Metallkd. 93, 737–744 (2002).

    Article  CAS  Google Scholar 

  39. A.D. Le Claire: On the theory of impurity diffusion in metals. Philos. Mag. 7, 141–167 (1962).

    Article  CAS  Google Scholar 

  40. J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski: Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0, 0.5, 1). Intermetallics 84, 52–61 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support by the Deutsche Forschungsgemeinschaft (DFG) (research Project No. DI 1419/13-1) is gratefully acknowledged. The usage of implantation equipment supported by the Federal Ministry of Education and Research (BMBF) through Grant Nos. 05K13MG1 and 05K16PGA (ISOLDE Project Nos. IS626 & IS627) is gratefully acknowledged. We would like to express our special thanks to the support by the ISOLDE team (particularly Fabian Hergemöller, Juliana Schell, Karl Johnston, and João Guilherme Correia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Gaertner or Sergiy V. Divinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaertner, D., Kottke, J., Wilde, G. et al. Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. Journal of Materials Research 33, 3184–3191 (2018). https://doi.org/10.1557/jmr.2018.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.162

Navigation