Skip to main content
Log in

Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A.F.H. Kaplan and G. Groboth: J. Manuf. Sci. Eng. Trans. ASME, 2001, vol. 123, pp. 609-14.

    Article  Google Scholar 

  2. M. Labudovic, D. Hu, and R. Kovacevic: J. Mater. Sci., 2003, vol. 38, pp. 35-49.

    Article  CAS  Google Scholar 

  3. L. Wang and S. Felicelli: J. Manuf. Sci. Eng., 2007, vol. 129, pp. 1028-34.

    Article  Google Scholar 

  4. J. Choi and Y. Chang: Int. J. Mach. Tool Manuf., 2004, vol. 45, pp. 597-607.

    Article  Google Scholar 

  5. J. Choi and Y. Hua: J. Laser Appl., 2004, vol. 16-4, pp. 245-51.

    Article  Google Scholar 

  6. L. Costa, T. Reti, A.M. Deus, and R. Vilar: Proc. Int. Conf. Manuf. Sci. Eng., MPIF, Princeton, NJ, 2002, pp. 172.

    Google Scholar 

  7. L. Costa, R. Vilar, T. Reti, R. Colaço, A.M. Deus, and I. Felde: Mater. Sci. Forum, 2005, vols. 473–474, pp. 315-20.

    Article  Google Scholar 

  8. L. Costa, R. Vilar, T. Reti, and A.M. Deus: Acta Mater., 2005, vol. 53, pp. 3987-99.

    Article  CAS  Google Scholar 

  9. S.M. Kelly, S.S. Babu, S.A. David, T. Zacharia, and S.L. Kampe: TMS Ann. Meet., Charlotte, NC, 2004, pp. 45-52.

    Google Scholar 

  10. S. Ghosh and J. Choi: J. Laser Appl., 2005, vol. 17-3, pp. 144-58.

    Article  Google Scholar 

  11. S. Ghosh and J. Choi: J. Heat Tran., 2006, vol. 128, pp. 662-79.

    Article  CAS  Google Scholar 

  12. S. Ghosh and J. Choi: J. Manuf. Sci. Eng., 2007, vol. 129, pp. 319-32.

    Article  Google Scholar 

  13. D.F. Watt, M. Coon, M. Bibby, J. Goldak, and C. Henwood: Acta Metall., 1988, vol. 36, pp. 3029-35.

    Article  CAS  Google Scholar 

  14. E. Foroozmehr and R. Kovacevic: Metall. Mater. Trans. A, 2009, vols. 40A, pp. 1935-43.

    Article  CAS  Google Scholar 

  15. G.A. Roberts, G. Krasuss, and R. Kennedy: Tool Steels, ASM, Materials Park, OH, 1998.

    Google Scholar 

  16. R.S. Lakhkar, Y.C. Shin, and M.J.M. Krane: Mater. Sci. Eng. A, 2008, vol. 480, pp. 209-17.

    Article  Google Scholar 

  17. M.A. Golozar: Principles and Applications of Heat Treatment of Steels, Isfahan Univ. Tech. Press, Isfahan, Iran, 2001.

    Google Scholar 

  18. W.F. Smith: Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York, NY, 1993.

    Google Scholar 

  19. O.O.D. Neto and R. Vilar: J. Laser Appl., 2002, vol. 14-1, pp. 46-51.

    Article  Google Scholar 

  20. Z. Hu, G. Zhou, and P. Nash: Modeling of Casting, Welding, and Advanced Solidification Processes, XI ed., TMS, Warrendale, PA, 2006, pp. 879-86.

    Google Scholar 

  21. C. Cho, G. Zhao, S.Y. Kwak, and C.B. Kim: J. Mater. Process Technol., 2004, vols. 153–154, pp. 494–500.

    Article  Google Scholar 

  22. M. Labudovic, D. Hu, and R. Kovacevic: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2000, vol. 214-8, pp. 683-92.

    Article  Google Scholar 

  23. S. Zekovic: Numerical Simulation and Experimental Investigation of Laser-Based Direct Metal Deposition, UMI Dissertation Services, Ann Arbor, MI, 2006.

    Google Scholar 

  24. Y. Lin, K.M. McHugh, Y. Zhou, and E.J. Lavernia: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1632-37.

    Article  CAS  Google Scholar 

  25. D. Au: Postgraduate Diploma of Research, Auckland University of Technology, Auckland, New Zealand, 2006.

  26. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

  27. D. Dean and M. Hidekazu: J. Comp. Mater. Sci., 2006, vol. 37, pp. 209-19.

    Article  Google Scholar 

  28. T. Reti, M. Gergely, and P. Tardy: J. Mater. Sci. Tech., 1987, vols. 3–5, pp. 365-71.

    Google Scholar 

  29. T. Miokovic, V. Schulze, O. Vohringer, and D. Lohe: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 547-55.

    Google Scholar 

  30. L. Wang, H. Kadiri, E. Felicelli, S. Horstemeyer, and M.P. Wang: SPIE Defense and Security Symposium, Orlando, FL, 2007.

    Google Scholar 

  31. R. Colaco and R. Vilar: J. Mater. Sci. Lett., 1998, vol. 17, pp. 563-67.

    Article  CAS  Google Scholar 

  32. G.E. Totten and M.A.H. Howes: Steel Heat Treatment Handbook, Marcel Dekker Publishers, New York, NY, 1997, pp. 632-33.

    Google Scholar 

  33. B.L. Bramfitt and A.O. Benscoter: Metallographer’s Guide, Practices and Procedures for Irons and Steels, ASM, Materials Park, OH, 2002.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Rouzbeh Sarrafi, Research Engineer in the Center for Laser Aided Manufacturing, for his valuable comments on this study. This work was supported partially by Grant EEC-0541952 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Kovacevic.

Additional information

Manuscript submitted October 29, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foroozmehr, E., Kovacevic, R. Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process. Metall Mater Trans A 42, 1907–1918 (2011). https://doi.org/10.1007/s11661-010-0561-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0561-3

Keywords

Navigation