Skip to main content
Log in

Grain Nucleation Parameters for Aluminum Alloys: Experimental Determination and Model Validation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A statistical grain nucleation model was implemented as a part of a multiphase flow and solidification simulation code for metallic alloys. Three characteristic parameters control the solution accuracy of the nucleation model: the total grain density, the mean undercooling, and the standard deviation of the undercooling. These parameters were obtained experimentally for grain-refined (GR) A356, GR AlCu4, and unrefined (UR) AlCu4 aluminum alloys. An apparatus was constructed and equipped with a cooling system to provide different cooling rates throughout the cast sample. The local grain density related to each cooling rate and undercooling was determined. The model parameters were obtained via statistical tools and were used to perform a simulation for the solidification of the cast sample. Calculated results were compared to experimental results, and the model exhibited good agreement with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. CFD software Fluent is a trademark of Ansys Inc., Southpoint, PA.

  2. Fluent Software is a trademark of Ansys Inc., Southpoint, PA.

References

  1. W. Oldfield: ASM Trans., 1966, vol. 59, pp. 945–61

    CAS  Google Scholar 

  2. I. Maxwell , A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229–37

    Article  CAS  Google Scholar 

  3. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–84

    Article  ADS  CAS  Google Scholar 

  4. D.D. Goettsch, J.A. Dantzig: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1063–79

    Article  ADS  CAS  Google Scholar 

  5. D.M. Stefanescu: Science and Engineering of Casting Solidification, Kluwer Academic/Plenum Publishers, New York, NY, 2002, pp. 119–26

    Google Scholar 

  6. P. Thevoz, M. Rappaz: Metall. Trans. A, 1989, vol. 20A, pp. 311–22

    ADS  CAS  Google Scholar 

  7. Fluent 6.3 User’s Guide, Fluent Inc., Lebanon, NH, 2006, pp. 23–40

  8. M. Rappaz, C.-A. Gandin: Acta Metall. Mater., 1993, vol. 41 (2), pp. 345–60

    Article  CAS  Google Scholar 

  9. A. Ludwig, M. Wu: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3673–83

    Article  CAS  Google Scholar 

  10. T. Wang, M. Wu, A. Ludwig, M. Abondano, B. Pustal, A. Bührig-Polaczek: Int. J. Cast Met. Res., 2005, vol. 18 (4), pp. 221–28

    Article  Google Scholar 

  11. M. Rappaz: Int. Mater. Rev., 1989, vol. 34 (3), pp. 93–123

    CAS  Google Scholar 

  12. S.-C. Jeng, S.-W. Chen: Acta Mater., 1997, vol. 45 (12), pp. 4887–99

    Article  CAS  Google Scholar 

  13. P. Comte: Ph.D. Thesis, IMS de I’Université de Neuchâtel, Suisse, 1975

  14. F. Pickerling: The Basis of Quantitative Metallography, The Institute of Metals, London, 1976

    Google Scholar 

  15. Thermochemical Database for Light Metal Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, eds., COST 507 Final Report Round II, European Communities, Luxembourg, 1998, vol. 2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmadein.

Additional information

Manuscript submitted June 1, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadein, M., Pustal, B., Berger, R. et al. Grain Nucleation Parameters for Aluminum Alloys: Experimental Determination and Model Validation. Metall Mater Trans A 40, 646–653 (2009). https://doi.org/10.1007/s11661-008-9738-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9738-4

Keywords

Navigation