Skip to main content
Log in

Formability of Ultrafine-Grain Mg Alloy AZ31B at Warm Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Warm formability of ultrafine-grain (UFG) AZ31B Mg alloy in the range of 150 °C to 311 °C is investigated. Refinement of grain size significantly improves the formability primarily through increasing strain rate sensitivity of flow stress and increasing diffuse quasi-stable flow, as compared with the coarse-grain AZ31B alloy. Strain rate sensitivity increases with increasing temperatures, and seems to be connected with dynamic recovery and grain boundary processes. For fine-grain sizes, twinning is inhibited. At 200 °C and strain rates below 2 × 10−4 s−1, the UFG AZ31B alloy demonstrates a high rate of strain hardening up to a true strain of 0.6, in addition to its high strain rate sensitivity, which is responsible for its enhanced formability. Examination of the microstructure shows that there is competition between dynamic grain growth and grain refinement during deformation at modest warm forming temperatures, the former causing hardening and the latter causing softening. Increasing the test strain rate and starting with larger grain size initiates deformation twinning during forming, and assists in the refinement of the coarser grains followed by recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp. Mahwah, NJ.

  2. The average grain size depends on the choice of the grain size averaging methods, e.g., simple average, area-based average, and volume-based average methods, as described in Refs. 15 and 16.

References

  1. K.U. Kainer and F. von Buch: in Magnesium Alloys and Technologies, K.U. Kainer, ed., DGM, Wiley-VCH, New York, NY, 2003, p. 1

  2. P.G. Patridge: Met. Rev., 1967, vol 118, p. 169

    Google Scholar 

  3. S.E. Ion, F.J. Humphreys, S.H. White: Acta Metall., 1982, vol. 30, p. 1909.

    Article  CAS  Google Scholar 

  4. A. Galiyev, R. Kaibyshev, G. Gottstein: Acta Metall., 2001, vol. 49, p. 1199.

    CAS  Google Scholar 

  5. T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, K. Higashi: Mater. Sci. Eng. A, 2000, vol. 290, p. 139

    Article  Google Scholar 

  6. J.C. Tan, M.J. Tan: Mater. Sci. Eng. A, 2003, vol. 339, p. 81

    Article  Google Scholar 

  7. O.A. Kaibyshev: Superplasticity of Alloys, Intermetallides, and Ceramics, Springer-Verlag, Berlin, 1992, vol. 148, p. 175

  8. K. Kubota, M. Mabuchi, K. Higashi: J. Mater. Sci., 1999, vol. 34, p. 2255

    Article  CAS  Google Scholar 

  9. M. Mabuchi, T. Asahina, H. Iwasaki, K. Higashi: Mater. Sci. Technol., 1997, vol. 13, p. 825

    CAS  Google Scholar 

  10. R. Mishra, S.X. McFadden, and A.K. Mukherjee: in Investigations and Applications of Severe Plastic Deformation, T.C. Lowe and R.Z. Valiev, eds., Kluwer Academic Publishers, The Netherlands, 2000, p. 231

  11. S. Kumura, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Mater., 1998, vol. 38, p. 1851

    Article  Google Scholar 

  12. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee: Mater. Sci. Eng. A, 2002, vol. 323, p. 318

    Article  Google Scholar 

  13. S.X. McFadden, A.P. Zhilyaev, R.S. Mishra, A.K. Mukherjee: Mater. Lett., 2000, vol. 45, p. 345

    Article  CAS  Google Scholar 

  14. K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon: Acta Mater., 2003, vol. 51, p. 3073

    Article  CAS  Google Scholar 

  15. Y. Liu, A.K. Ghosh: in Magnesium Technology 2005, N.R. Neelameggham, H.I. Kaplan, B.R. Powell, eds., TMS, Warrendale, PA, 2005, p. 139.

    Google Scholar 

  16. Q. Yang and A.K. Ghosh: Acta. Mater., 2006, vol. 54, pp. 5147–58; see also Q. Yang: Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 2005

  17. Q. Yang and A.K. Ghosh: Acta. Mater., 2006, vol. 54, pp. 5159–70; see also Q. Yang: Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 2005

  18. P.A. Friedman, A.K. Ghosh: Metall. Mater. Trans. A, 1996, vol. 27A, p. 3030

    Article  CAS  Google Scholar 

  19. A.K. Ghosh, C.H. Hamilton: Metall. Trans. A, 1979, vol. 10A, p. 699.

    CAS  Google Scholar 

  20. W.F. Hosford, R.M. Caddell: Metal Forming: Mechanics and Metallurgy, 2nd ed., PTR Prentice Hall, Englewood Cliffs, NJ, 1993, p. 271.

    Google Scholar 

  21. T.H. Courtney: Mechanical Behavior of Materials, McGraw-Hill Inc., New York, NY, 1990, p. 277

    Google Scholar 

  22. W.F. Hosford: Mechanical Behavior of Materials, Cambridge University Press, Cambridge, United Kingdom, 2005, p. 111

    Google Scholar 

  23. ASM Specialty Handbook, M.M. Avedesian and H. Baker, eds., ASM INTERNATIONAL, Materials Park, OH, 1999, p. 10

  24. H.J. Frost, M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982

    Google Scholar 

  25. M.A. Clark, T.H. Alden: Acta Metall., 1973, vol. 21, p. 1195

    Article  CAS  Google Scholar 

  26. D.S. Wilkinson, C.H. Caceres: Acta Metall., 1984, vol. 34, p. 1335

    Google Scholar 

  27. F. Li, D.H. Bae, A.K. Ghosh: Acta Mater., 1997, vol. 45, p. 3887

    Article  CAS  Google Scholar 

  28. M.G. Zelin: Acta Mater., 1997, vol. 45, p. 3533

    Article  CAS  Google Scholar 

  29. A.K. Ghosh: Acta Metall., 1977, vol. 25, p. 1413

    Article  Google Scholar 

  30. E.W. Hart: Acta Metall., 1967, vol. 15, p. 351

    Article  CAS  Google Scholar 

  31. U.F. Kocks, J.J. Jonas, H. Mecking: Acta Metall., 1979, vol. 27, p. 419

    Article  Google Scholar 

  32. A.K. Ghosh: Acta Metall., 1980, vol. 28, p. 1443

    Article  Google Scholar 

  33. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, p. 1225

    CAS  Google Scholar 

  34. A.K. Ghosh: Mater. Sci. Forum, 1994, vols. 170–172, p. 39

    Article  Google Scholar 

  35. M.F. Ashby: Surf. Sci., 1972, vol. 31, p. 498.

    Article  CAS  Google Scholar 

  36. S.R. Agnew: Magnesium Technology 2002, H.I. Kaplan, eds., TMS, Warrendale, PA, 2002, p. 169.

    Google Scholar 

  37. O. Duygulu, S.R. Agnew, Magnesium Technology 2003, H.I. Kaplan, ed., TMS, Warrendale, PA, 2003, p. 237.

    Google Scholar 

  38. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, p. 121

    Article  Google Scholar 

  39. M.A. Meyers, O. Vohringer, V.A. Lubarda: Acta Mater., 2001, vol. 49, p. 4025

    Article  CAS  Google Scholar 

  40. F.J. Humphreys: Acta Mater., 1997, vol. 45, p. 4231

    Article  CAS  Google Scholar 

  41. A. Oscarsson, H.-E. Ekstrom, B. Hutchinson: in Recrystallization ‘92, M. Fuentes, J. Gil Sevillano, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1992, p. 177

    Google Scholar 

  42. H. Hu: Electron Microscopy and Strength of Crystals, Interscience Publishers, New York, NY, 1963

    Google Scholar 

  43. P. Cotterill, P.R. Mould: Recrystallization and Grain Growth in Metals, John Wiley & Sons, New York, NY, 1976

    Google Scholar 

  44. Binary Alloy Phase Diagrams, T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, p. 2444

Download references

Acknowledgment

This work was performed with support from the National Science Foundation through Award No. DMR 0314218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Ghosh.

Additional information

Manuscript submitted September 1, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Ghosh, A. Formability of Ultrafine-Grain Mg Alloy AZ31B at Warm Temperatures. Metall Mater Trans A 39, 2781–2796 (2008). https://doi.org/10.1007/s11661-008-9551-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9551-0

Keywords

Navigation