Skip to main content
Log in

Reactive Wetting of an Iron-Base Superalloy MSA2020 and 316L Stainless Steel by Molten Zinc-Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The reactive wetting behaviors of MSA2020, an Fe-based superalloy, and 316L stainless steel in contact with a molten Zn-Al alloy were investigated by the sessile drop method. This investigation led to the following findings. (1) 316L not only suffered considerable wetting, but also reacted with the molten Zn-Al alloy at a higher rate than MSA2020. (2) The contact angle of MSA2020 wet by the molten Zn-Al alloy dropped to an acute angle when the temperature was increased to 500 °C. (3) The surface reaction was found to initiate even though the liquid droplet and substrate were observed as nonwetting (contact angle larger than 90 deg). (4) The reaction mechanisms were identified in three stages. Initially, the Al diffused into the substrate to form an Fe-aluminide layer, which acted as the reaction front. Next, the reaction front penetrated the substrate through inward diffusion of Al. Finally, Zn-rich zones formed behind the reaction front as a result of Al depletion. (5) The alloying constituents (W, Mo, and Cr) in MSA2020 stably segregating on the surface reduced the wettability by molten Zn-Al by covering the reactive sites on the solid-liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. K. Zhang and N.-Y. Tang: Galvatech ‘04: 6th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet––Conf. Proc., Chicago, IL, AIST, Warrendale, PA, 2004, pp. 617–27

  2. V. Parthasarathy, B.S.-J. Kang, A. Krishnaswamy, E. Barbero, K.M. Chang, C. Irwin, and F. Goodwin: Galvatech ‘04: 6th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet—Conf. Proc., Chicago, IL, AIST, Warrendale, PA, 2004, pp. 637–55

  3. W.J. Wang, J.P. Lin, Y.L. Wang, G.L. Chen: J. Univ. Sci. Technol., 2007, vol. 14, pp. 52–55

    Google Scholar 

  4. K. Zhang, N.-Y. Tang: Mater. Sci. Technol., 2004, vol. 20, pp. 739–46

    Article  CAS  Google Scholar 

  5. M.S. Brunnock, R.D. Jones, G.A. Jenkins, D.T. Llewellyn: Ironmaking and Steelmaking, 1997, vol. 24, pp. 40–46

    CAS  Google Scholar 

  6. M.S. Brunnock, R.D. Jones, G.A. Jenkins, D.T. Llewellyn: Ironmaking and Steelmaking, 1996, vol. 23, pp. 171–76

    CAS  Google Scholar 

  7. M.S. Brunnock, R.D. Jones, G.A. Jenkins, and D.T. Llewellyn: Proc. Galvanizers Association, Chicago, IL, 1996, pp. 3–15

  8. K. Nogi: Proc. Result Presentations for International Joint Research Grant Program Proposals, NEDO, 2005, p. H-17

  9. K. Brondyke: J. Am. Ceram. Soc., 1953, vol. 36, pp. 171–74

    Article  CAS  Google Scholar 

  10. L. Bordignon: ISIJ Int., 2001, vol. 41, pp. 168–74

    Article  CAS  Google Scholar 

  11. M.-L. Giorgi, M. Zaïdi, and J.-B. Guillot: North American GAP Program Review Meeting, Lexington, KY, ILZRO, Research Triangle, NC, 2005, p. 40

  12. Y. Chung, J. Wang, J.M. Toguri, M.X. Yao: Iron Steelmaker, 2001, vol. 28, pp. 63–67

    CAS  Google Scholar 

  13. N. Ebrill, Y. Durandet, L. Strezov: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1069–79

    Article  CAS  Google Scholar 

  14. B. Gay, A. Piccinin, and M. Dubois: Proc. Galvatech ‘01, Brussels, 2001, pp. 262–69

  15. W. Fahrenholtz, K. Ewsuk, R. Loehman, P. Lu: J. Am. Ceram. Soc., 1998, vol. 81, pp. 2533–41

    CAS  Google Scholar 

  16. X. Liu, E. Barbero, J. Xu, M. Burris, K.-M. Chang, V. Sikka: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2049–58

    Article  CAS  Google Scholar 

  17. A.R. Marder: Progr. Mater. Sci., 2000, vol. 45, pp. 191–271

    Article  CAS  Google Scholar 

  18. A.R.B. Verma, W.J. van Ooij: Surf. Coat. Technol., 1997, vol. 89, pp. 132–42

    Article  CAS  Google Scholar 

  19. N. Tunca, G.W. Delamore, R.W. Smith: Metall. Trans. A, 1990, vol. 21A, pp. 2919–28

    CAS  Google Scholar 

  20. R. Eck: Metall, 1978, vol. 32, pp. 891–94

  21. J. Xu, M. Bright, X. Liu, E. Barbero: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2727–36

    Article  CAS  Google Scholar 

  22. J.E. Kelley, H.M. Harris: J. Test. Eval., 1974, vol. 2, p. 40

    CAS  Google Scholar 

  23. A. Salehi, S. Tsai, V. Pawar, J. Sprague, G. Hunter, S. Varma, F. Namavar: Key Eng. Mater., 2006, vols. 309–311, pp. 1199–1202

    Article  Google Scholar 

  24. A.S. Zuruzi, C.-H. Chiu, S.K. Lahiri, K.N. Tu: J. Appl. Phys., 1999, vol. 86, pp. 4916–21

    Article  CAS  Google Scholar 

  25. A.J. Sunwoo, J.W. Morris, G.K. Lucey: Metall. Trans. A, 1992, vol. 23A, pp. 1323–32

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Metaullics Systems (Division of Pyrotek Inc.) for their cooperation to publish these results. Thanks are due to Wheeling-Nisshin, Inc. who helped with supplying the galvanizing zinc. We acknowledge the contributions of Randy Parton, Randy Howell, and Donny McInturff, ORNL, in support of the experimental execution described in this article. The efforts of Mingyang Gong in reviewing this document are also appreciated. This research was sponsored by the United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, for the United States Department of Energy under Contract No. DE-FC36-04GO14038 and was supported by the Industries of the Future–West Virginia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbo Liu.

Additional information

Manuscript submitted August 29, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Liu, X., Bright, M. et al. Reactive Wetting of an Iron-Base Superalloy MSA2020 and 316L Stainless Steel by Molten Zinc-Aluminum Alloy. Metall Mater Trans A 39, 1382–1391 (2008). https://doi.org/10.1007/s11661-008-9501-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9501-x

Keywords

Navigation