Skip to main content
Log in

Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Brunnock, R. Jones, G. Jenkins, D. Llewellyn: Ironmaking and Steelmaking, 1996, vol. 23, pp. 171–76

    CAS  Google Scholar 

  2. X. Liu, E. Barbero, J. Xu, M. Burris, K.-M. Chang, V. Sikka: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2049–58

    Article  CAS  Google Scholar 

  3. F. Goodwin, K.-M. Chang, V. Sikka: 94th Annual Meeting, Galvanizer’s Association, Dearborn, MI, 2002

    Google Scholar 

  4. M. Brunnock, R. Jones, G. Jenkins, D. Llewellyn: Zinc-Based Steel Coating Systems, TMS, Warrendale, PA, 1998, pp. 51–62

    Google Scholar 

  5. K. Tani, T. Tomita, ISIJ, 1994, vol. 34, pp. 822–28

    CAS  Google Scholar 

  6. B. Seong, S. Hwang, M.C. Kim, K.Y. Kim: Surf. Coat. Technol., 2001, vol. 138, pp. 101–10

    Article  CAS  Google Scholar 

  7. M. Brunnock, R. Jones, G. Jenkins, D. Llewellyn: Ironmaking and Steelmaking, 1997, vol. 24, pp. 40–46

    CAS  Google Scholar 

  8. E. Barbero, X. Liu, B. Kang, J. Loth, J. Snider, V. Sikka, F. Goodwin: 95th Annual Meeting, Galvanizer’s Association, Monterrey, Mexico, 2003

    Google Scholar 

  9. N. Tang: J. Phase Equilib., 2000, vol. 21(1), pp. 70–77

    Article  CAS  Google Scholar 

  10. X. Su, N. Tang, J.M. Toguri: J. Alloys Compd., 2001, vol. 325, pp. 129–36

    Article  CAS  Google Scholar 

  11. N. Tang, Y. Liu, K. Zhang: 44th Mechanical Working and Steel Processing Conf. Proc. (Iron and Steel Society), 2002, vol. 40, pp. 815–21

    CAS  Google Scholar 

  12. N. Tang: 97th Annual Meeting, Galvanizer’s Association, Lexington, KY, 2005

    Google Scholar 

  13. N. Tang: ZCO-15-4: Dross Buildup–Influences on the Hardware Materials and Line Operating Conditions, ILZRO Progress Report, International Lead Zinc Research Organization, Research Triangle, NC, Oct. 2005

  14. E. Pennell: 76th Annual Meeting, Galvanizer’s Association, West Middlesex, PA, 1984

    Google Scholar 

  15. B. Dugan: AGA Galvanizing Note, American Galvanizers Association, Centennial, CO, Mar. 2006

  16. M. Bright: Ph.D. Dissertation, West Virginia University, Morgantown, WV, 2007

  17. V. Dybkov: J. Mater. Sci., 1990, vol. 25, pp. 3615–33

    Article  CAS  Google Scholar 

  18. F. Barbier, J. Blanc: J. Mater. Res., 1999, vol. 14, pp. 737–44

    Article  CAS  Google Scholar 

  19. D. Hortsmann and F.K. Peters: Proc. Conf. Intergalva ’70, Industrial Newspaper Ltd., London, UK, 1970, pp. 75–105

  20. A. Turnbull, M.W. Carroll: Corr. Sci., 1990, vol. 30, pp. 667–79

    Article  CAS  Google Scholar 

  21. R.A. Holt and F.G. Elder: AECL-4586, Jan. 1974, 12 pp

  22. K. Hidehiko, S. Hideo: Corr. Eng., 1985, vol. 34, pp. 18–22

    Google Scholar 

  23. ASM Handbook, vol. 3, Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1992

  24. A.R.P. Ghuman, J.I. Goldstein: Metall. Trans., 1971, vol. 2, pp. 2903–14

    CAS  Google Scholar 

  25. A. Allen, J. Mackowiak: J. Inst. Met., 1962–63, vol. 91, pp. 369–72

    Google Scholar 

  26. M. Andreani, P. Azou, P. Bastien: C.R. Acad. Sci. Paris, 1966, vol. 263, pp. 1041–43

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the United States Department of Energy under Contract No. DE- PS07-031D14425 and the International Lead Zinc Research Organization (ILZRO) under Project No. ZCO-15-3. We extend special thanks Pyrotek Incorporated for the experimental work and permission to publish the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbo Liu.

Additional information

Manuscript submitted February 7, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Bright, M.A., Liu, X. et al. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath. Metall Mater Trans A 38, 2727–2736 (2007). https://doi.org/10.1007/s11661-007-9320-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9320-5

Keywords

Navigation