Skip to main content
Log in

Effects of Thermal Exposure on the Microstructure and Mechanical Properties of Al-Si-Cu-Ni-Mg-Gd Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study focused on the effect of thermal exposure on the phase evolution and properties of the cast-T6 Al-12Si-4Cu-2Ni-0.8Mg-xGd (x = 0, 0.1, and 0.2) alloy used for cast piston.The thermal stability of the alloys was studied in the temperature range of 200-300 °C for exposure duration up to 500 h, thus obtaining the relationship between the microstructural evolution and its impact on the mechanical properties. The fine Al2Cu phase grew into the coarse θ-Al2Cu phases during the thermal exposure, resulting in a decrease in the mechanical strength of the alloy. The thermal stability and stiffness of the Al-Si-Cu-Ni-Mg alloys were improved with the increase in Gd content from 0 to 0.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, R. Banerjee, and T. Shibata, Probing the Local Atomic Structure of Sr-Modified Al-Si Alloys, Acta Mater., 2014, 65, p 185–193

    Article  Google Scholar 

  2. J.H. Chen, E. Costan, M.A. van Huis, Q. Xu, and H.W. Zandbergen, Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys, Science, 2006, 312, p 416–419

    Article  Google Scholar 

  3. A. Bjurenstedt, D. Casari, S. Seifeddine, R.H. Mathiesen, and A.K. Dahle, In-Situ Study of Morphology and Growth of Primary α-Al(FeMnCr)Si Intermetallics in an Al-Si Alloy, Acta Mater., 2017, 130, p 1–9

    Article  Google Scholar 

  4. Y. Birol, Melt Treatment of Al-Si Foundry Alloys with B and Sr Additions, J. Mater. Sci., 2017, 52, p 6856–6865

    Article  Google Scholar 

  5. A. Bjurenstedt, S. Seifeddine, and A.E.W. Jarfors, The Effects of Fe-Particles on the Tensile Properties of Al-Si-Cu Alloys, Metals, 2016, 6, p 314–329

    Article  Google Scholar 

  6. A. Morozova, A. Mogucheva, D. Bukin, O. Lukuanova, N. Korotkova, N. Belov, and R. Kaibyshev, Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys, Metals, 2017, 7, p 495–507

    Article  Google Scholar 

  7. G. Rajaram, S. Kumaran, and T.S. Rao, Effect of Graphite and Transition Elements (Cu, Ni) on High Temperature Tensile Behaviour of Al-Si Alloys, Mater. Chem. Phys., 2011, 128, p 62–69

    Article  Google Scholar 

  8. Z. Asghar, G. Requena, H.P. Degischer, and P. Cloetens, Three-Dimensional Study of Ni Aluminides in an AlSi12 Alloy by Means of Light Optical and Synchrotron Microtomography, Acta Mater., 2009, 57, p 4125–4132

    Article  Google Scholar 

  9. M. Zeren, The Effect of Heat-Treatment on Aluminum-Based Piston Alloys, Mater. Des., 2007, 28, p 2511–2517

    Article  Google Scholar 

  10. Y. Sui, D. Ji, L. Han, and Q. Wang, Characterization of the Aging Precipitates of Al-12Si-4Cu-2Ni-0.8Mg-0.2Gd Pistion Alloy, JOM, 2018, https://doi.org/10.1007/s11837-018-3080-0

    Google Scholar 

  11. M. Zhu, Z. Jian, L. Yao, C. Liu, G. Yang, and Y. Zhou, Effect of Mischmetal Modification Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of Al-7.0%Si-0.3%Mg Foundry Aluminum Alloys, J. Mater. Sci., 2010, 46, p 2685–2694

    Article  Google Scholar 

  12. W. Kasprzak, B.S. Amirkhiz, and M. Niewczas, Structure and Properties of Cast Al-Si Based Alloy with Zr-V-Ti Additions and Its Evaluation of High Temperature Performance, J. Alloy. Compd., 2014, 595, p 67–79

    Article  Google Scholar 

  13. J.B. Ferguson, H.F. Lopez, K. Cho, and C.-S. Kim, Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys, Metals, 2016, 6, p 43–55

    Article  Google Scholar 

  14. Y. Zhou, Z. Liu, S. Bai, P. Ying, and L. Lin, Effect of Ag Additions on the Lengthening Rate of Ω Plates and Formation of σ Phase in Al-Cu-Mg Alloys During Thermal Exposure, Mater. Charact., 2017, 123, p 1–8

    Article  Google Scholar 

  15. O.R. Myhr, Ø. Grong, and S.J. Andersen, Modelling of the Age Hardening Behaviour of Al-Mg-Si Alloys, Acta Mater., 2001, 49, p 65–75

    Article  Google Scholar 

  16. L. Ceschini, A. Morri, A. Morri, and M.D. Sabatino, Effect of Thermal Exposure on the Residual Hardness and Tensile Properties of the EN AW-2618A Piston Alloy, Mater. Sci. Eng., A, 2015, 639, p 288–297

    Article  Google Scholar 

  17. M. Colombo, E. Gariboldi, and A. Morri, Er Addition to Al-Si-Mg-Based Casting Alloy: Effects on Microstructure, Room and High Temperature Mechanical Properties, J. Alloys Compd., 2017, 708, p 1234–1244

    Article  Google Scholar 

  18. Y. Tzeng, C. Wu, C. Yang, and S. Lee, Effects of Trace Be and Sc Addition on the Thermal Stability of Al-7Si-0.6Mg Alloys, Mater. Sci. Eng., A, 2014, 614, p 54–61

    Article  Google Scholar 

  19. Y. Sui, Q. Wang, T. Liu, B. Ye, H. Jiang, and W. Ding, Influence of Gd Content on Microstructure and Mechanical Properties of Cast Al-12Si-4Cu-2Ni-0.8Mg Alloys, J. Alloys Compd., 2015, 644, p 228–235

    Article  Google Scholar 

  20. ISO 6892-1:2009, Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, ISO, 2009.

  21. L.R. Garcia, W.R. Osório, and A. Garcia, The Effect of Cooling Rate on the Dendritic Spacing and Morphology of Ag3Sn Intermetallic Particles of a SnAg Solder Alloy, Mater. Des., 2011, 32, p 3008–3012

    Article  Google Scholar 

  22. W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferriera, and A. Garcia, Corrosion Resistance of Directionally Solidified Al-6Cu-1Si and Al-8Cu-3Si Alloys Castings, Mater. Des., 2011, 32, p 3832–3837

    Article  Google Scholar 

  23. L.A. Dobrzański, R. Maniara, and J.H. Sokolowski, The Effect of Cooling Rate on Microstructure and Mechanical Properties of AC AlSi9Cu Alloy, Arch. Mater. Sci. Eng., 2007, 28, p 105–112

    Google Scholar 

  24. H.M. Medrano-Prieto, C.G. Garay-Reyes, C.D. Gómez-Esparza, J. Aguilar-Santillán, M.C. Maldonado-Orozco, and R. Martínez-Sánchez, Evolution of Microstructure in Al-Si-Cu System Modified with a Transition Element Addition and Its Effect on Hardness, Mater. Res., 2016, 19, p 59–66

    Article  Google Scholar 

  25. M. Tash, F.H. Samuel, F. Mucciardi, and H.W. Doty, Effect of Metallurgical Parameters on the Hardness and Microstructural Characterization of As-cast and Heat-Treated 356 and 319 Aluminum Alloys, Mater. Sci. Eng., A, 2007, 443, p 185–201

    Article  Google Scholar 

  26. Z. Lai and D. Ye, Effect of Cooling Method and Aging Treatment on the Microstructure and Mechanical Properties of Sn-10Bi Solder Alloy, J. Mater. Sci.: Mater. Electron., 2016, 27, p 1–10

    Google Scholar 

  27. J.X. Jia, A. Atrens, G. Song, and T.H. Muster, Simulation of Galvanic Corrosion of Magnesium Coupled to a Steel Fastener in NaCl Solution, Mater. Corros., 2015, 56, p 468–474

    Article  Google Scholar 

  28. L. Han, Y. Sui, Q. Wang, K. Wang, and Y. Jiang, Effects of Nd on Microstructure and Mechanical Properties of Cast Al-Si-Cu-Ni-Mg Piston Alloys, J. Alloys Compd., 2017, 695, p 1566–1572

    Article  Google Scholar 

  29. H. Li, D. Huang, W. Kang, J. Liu, Y. Ou, and D. Li, Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al-Cu-Li Alloy, J. Mater. Sci. Technol., 2016, 32, p 1049–1053

    Article  Google Scholar 

  30. Y. Sun, S. Ma, H. Wang, L. Chen, K. Gao, Y. Ma, and B. Liu, Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt.% Mg2Si-4.5Cu Alloys, Materials, 2016, 9, p 157–165

    Article  Google Scholar 

  31. K. Gao, S. Li, L. Xu, and H. Fu, Effect of Sample Size on Intemetallic Al2Cu Microstructure and Orientation Evolution During Directional Solidification, J. Cryst. Growth, 2014, 394, p 89–96

    Article  Google Scholar 

  32. H. Rudinato, S. Yang, K.W. Nam, and Y.J. Kim, Mechanical Properties of Al-14Si-2.5Cu-0.5 Mg Aluminum-Silicon P/M Alloy, Rev. Adv. Mater. Sci., 2011, 28, p 145–149

    Google Scholar 

  33. D.J. Chakrabarti and D.E. Laughlin, Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions, Prog. Mater Sci., 2004, 49, p 389–410

    Article  Google Scholar 

  34. A. Biswas, D.J. Siegel, and D.N. Seidman, Compositional Evolution of Q-Phase Precipitates in an Aluminum Alloy, Acta Mater., 2014, 75, p 322–336

    Article  Google Scholar 

  35. C.-Y. Jeong, High Temperature Mechanical Properties of Al-Si-Mg-(Cu) Alloys for Automotive Cylinder Heads, Mater. Trans., 2013, 54, p 588–594

    Article  Google Scholar 

  36. J.F. Nie and B.C. Muddle, Comments on the “Dislocation Interaction with Semicoherent Precipitates (Ω Phase) in Deformed Al-Cu-Mg-Ag Alloy”, Scr. Mater., 2000, 42, p 409–413

    Article  Google Scholar 

  37. G. Liu, G.J. Zhang, X.D. Ding, J. Sun, and K.H. Chen, Modeling the Strengthening Response to Aging Process of Heat-Treatable Aluminum Alloys Containing Plate/Disc- or Rod/Needle-Shaped Precipitates, Mater. Sci. Eng., A, 2003, 344, p 113–124

    Article  Google Scholar 

  38. C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1961, 65, p 581–591

    Google Scholar 

  39. I.M. Lifshitz and S.V. Vitaly, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, 19, p 35–50

    Article  Google Scholar 

  40. S. Esmaeili, D. Lloyd, and W. Poole, A Yield Strength Model for the Al-Mg-Si-Cu Alloy AA6111, Acta Mater., 2003, 51, p 2243–2257

    Article  Google Scholar 

  41. J.E. Tibballs, J.A. Horst, and C.J. Simensen, Precipitation of α-Al(Fe, Mn)Si from the Melt, J. Mater. Sci., 2001, 36, p 937–941

    Article  Google Scholar 

  42. K.L. Fan, G.Q. He, X.S. Liu, M. She, Y.L. Yuan, Y. Yang, and Q. Lu, Tensile and Fatigue Properties of Gravity Casting Aluminum Alloys for Engine Cylinder Heads, Mater. Sci. Eng., A, 2013, 586, p 78–85

    Article  Google Scholar 

Download references

Acknowledgments

This project funded by the National Natural Science Foundation of China (No. 51802134), China Postdoctoral Science Foundation (No. 2018T110999), Yunnan Provincial Department of Education Science Research Fund Project (No. 2018JS033), and Yunnan Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Han or Qudong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Y., Han, L. & Wang, Q. Effects of Thermal Exposure on the Microstructure and Mechanical Properties of Al-Si-Cu-Ni-Mg-Gd Alloy. J. of Materi Eng and Perform 28, 908–915 (2019). https://doi.org/10.1007/s11665-018-3835-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3835-3

Keywords

Navigation