Skip to main content
Log in

Synthesis of NiTi by Low Electrothermal Loss Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Due to their excellent shape memory and superelasticity properties, NiTi compounds are considered among the most important shape memory alloys. The present work presents a synthesis method for obtaining dense NiTi from elemental powders using a modified spark plasma sintering (SPS) setup characterized by considerably higher current density through the sample at the same total current, as well as drastically decreased heat losses. This provides the possibility to maximize the use of the strong effect of current density on enhanced interdiffusion in metal-metal systems reported in the literature. In addition, the heat loss reduction results in significantly lower total power consumption for synthesis compared to the commonly used SPS setups. The new setup is based on a metallic die/plunger set, combined with a graphite heat generating foil and a thermoelectrical insulation layer. The effect of the processing time on the homogenization of NiTi and the evolution of the intermetallic compounds with time is studied and compared to conventional SPS. Blending for 5 minutes and processing for 30 minutes (with neither preheating, nor postheating, nor quench) were enough to get almost pure dense cubic NiTi (ρ = 6.10 gcm−3, dominant NiTi phase ≈ 97 pct). A small fraction of both Ti and NiTi2, but neither Ni nor Ni3Ti, was detected after 20 minutes of processing. Ni4Ti3 was detected but not quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Mihálcz: Periodica Polytechnica Ser. Mech. Eng., 2001, vol. 45, pp. 75–86

    Google Scholar 

  2. J. Uchil: Pramana-J. Phys., 2002, vol. 58, pp. 1131–39

    Article  CAS  Google Scholar 

  3. K. Otsuka, X. Ren: Intermetallics, 1999, vol. 7, pp. 511–28

    Article  CAS  Google Scholar 

  4. J.V. Humbeeck: J. Alloys Compd., 2003, vol. 355, pp. 58–64

    Article  CAS  Google Scholar 

  5. R. DesRoches, R. Leon, G. Hess, and J. Ocel: Proc. US-China Millenium Symp. on Earthquake, Beijing, China, 2000

  6. C.L. Chu, C.Y. Chung, P.H. Lin, S.D. Wang: Mater. Sci. Eng., A, 2004, vol. 366, pp. 114–19

    Article  CAS  Google Scholar 

  7. K. Ho, G.P. Carman, and P. Jardine: SPIE Smart Struct. Conf., 1999, vol. 3675, pp. 252–67 (See http://aml.seas.ucla.edu/research/pubs/index.htm)

  8. A.R Pelton, J. Dicello, and S. Miyazaki: Minimally Invasive Therapy & Allied Technol., 2000, vol. 9, pp. 107–18 (See http://www.nitinol-europe.com/pdfs/nitinolwire.pdf)

  9. Z. Zhang, J. Frenzel, K. Neuking, G. Eggeler: Acta Mater., 2005, vol. 53, pp. 3971–85

    Article  CAS  Google Scholar 

  10. D.C. Lagoudas, E.L. Vandygriff: J. Int. Mater. Sys. Struct., 2002, vol. 13, pp. 837–50

    Article  CAS  Google Scholar 

  11. J. Mentz, M. Barm, H.P. Buchkremer, D. Stöver: Adv. Eng. Mater., 2006, vol. 8, pp. 247–52

    Article  CAS  Google Scholar 

  12. L.E. Penrod: Master’s Thesis, Texas A&M University, College Station, TX, USA, 2003

  13. K. Thangaraj, Y.C. Chen, and K. Salama: Proc. Symp. from the 2000 ASME Int. Mechanical Engineering Congr. Expo, Orlando, FL, Nov. 5–10, 2000, pp. 59–63

  14. B.Y. Tay, C.W. Goh, M.S. Yong, A.M. Soutar, Q. Li, M.H. Myint, Y.W. Gu, C.S. Lim: SIMTech Tech. Rep., 2006, vol. 7, pp. 21–25

    Google Scholar 

  15. B. Yuan, C.Y. Chung, X.P. Zhang, M.Q. Zeng, M. Zhu: Smart Mater. Struct., 2005, vol. 14, pp. S201–S206

    Article  CAS  Google Scholar 

  16. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763–77

    Article  CAS  Google Scholar 

  17. W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, Z.A. Munir: Mater. Sci. Eng., A, 2005, vol. 394, pp. 132–38

    Article  CAS  Google Scholar 

  18. J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir: Acta Mater., 2003, vol. 51, pp. 4487–95

    Article  CAS  Google Scholar 

  19. N. Bertolino, J. Garay, U. Anselmi-Tamburini, Z.A. Munir: Philos. Mag., 2002, vol. 82, pp. 969–85

    CAS  Google Scholar 

  20. J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir: Intermetallics, 2004, vol. 12, pp. 589–97

    Article  CAS  Google Scholar 

  21. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir: Mater. Sci. Eng., A, 2005, vol. 394, pp. 139–48

    Article  CAS  Google Scholar 

  22. C. Uher and L.M. Sander: Phys. Rev. B, 1983, vol. 27, pp. 1326–32

    Article  CAS  Google Scholar 

  23. O.A. Grave, Z.A. Maunir: J. Alloys Compd., 2002, vol. 340, pp. 79–87

    Article  Google Scholar 

  24. A.M. Locci, R. Orrù, G. Cao, Z.A. Munir: Intermetallics, 2003, vol. 11, pp. 555–71

    Article  CAS  Google Scholar 

  25. G. Skandan, H. Hahn, B.H. Kear, M. Roddy, W.R. Cannon: Mater. Lett., 1994, vol. 20 (5–6), pp. 305–09

    Article  CAS  Google Scholar 

  26. S.L. Zhu, X.J. Yang, D.H. Fu, L.Y. Zhang, C.Y. Li, Z.D. Cui: Mater. Sci. Eng., A, 2005, vol. 408, pp. 264–68

    Article  CAS  Google Scholar 

  27. V.I. Zel’dovich, N.Y. Frolova, I.V. Khomskaya, E.A. Epanechnikov: J. Phys. IV France, 2003, vol. 112, pp. 773–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Texas Center for Superconductivity at the University of Houston. We also acknowledge the support of Army Research Office Grant No. 46828-MS-ISP and the support of the Texas Institute for Intelligent Bio-Nano Materials and Structures for Aerospace Vehicles, funded by NASA Cooperative Agreement No. NCC- 1-02038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.C. Chen.

Additional information

Manuscript submitted January 12, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majkic, G., Chennoufi, N., Chen, Y. et al. Synthesis of NiTi by Low Electrothermal Loss Spark Plasma Sintering. Metall Mater Trans A 38, 2523–2530 (2007). https://doi.org/10.1007/s11661-007-9307-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9307-2

Keywords

Navigation