Skip to main content
Log in

The Effect of Strain Rate on the Microstructure and Mechanical Properties of Q&P 980 Steel

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of dynamic strain rate on the microstructure and properties of Q&P980 high-strength steel is studied. The quenching and partitioning, and tempering (Q&P-T) heat-treatment process was used to select different dynamic strain rates (1, 600, 1200 s–1) for tensile testing. The microstructure was characterized by OM, XRD, SEM, EBSD, and other tests to investigate the relationship between microstructure and mechanical properties. The results show that the strengthening stage and the necking stage of the tested steel appear to be prolonged, at dynamic strain rates. The strength and plasticity of the tested steel were significantly improved. The microstructure and morphology of the tested steels in the deformed and undeformed areas were found to be increasingly near to each other at dynamic strain rates of 600 and 1200 s–1. Under the impact of the TRIP effect and the adiabatic temperature rise effect at high strain rate stretching, the microstructure appears to be refined and elongated. The tested steel performed best overall at a dynamic strain rate of 1200 s–1, with a tensile strength of 1080 MPa and an energy absorption strength of 38.97 GPa%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. R. B. Song, W. F. Huo, N. P. Zhou, J. J. Li, Z. R. Zhang, and Y. J. Wang, “Research progress and prospect of Fe–Mn–Al–C medium Mn steels,” Chin. J. Eng. 42, 814–828 (2020).

    CAS  Google Scholar 

  2. B. Hu, H. Luo, F. Yang, and H. Dong, “Recent progress in medium-Mn steels made with new designing strategies, a review,” J. Mater. Sci. Technol. 33, 1457–1464 (2017). https://doi.org/10.1016/j.jmst.2017.06.017

    Article  CAS  Google Scholar 

  3. C. Y. Wang, J. Yang, Y. Chang, W. Q. Cao, and H. Dong, “Development trend and challenge of advanced high strength automobile steels,” Iron Steel 54, 1–6 (2019).

    CAS  Google Scholar 

  4. W. Chen, S. L. Hu, Y. L. Gao, Y. Yang, G. J. Sun, H. K. Zhou, and J. W. Li, “The study on dynamic response mechanism of TRIP steel in the highest strain rate,” Mater. Sci. 5, 227–234 (2015). https://doi.org/10.12677/ms.2015.56031

    Article  Google Scholar 

  5. J. X. Fang, X. Q. Zhang, H. T. Wang, and L. L. Xie, “Dynamic tensile properties and constitutive model of 5052 aluminum alloy,” J. Mech. Eng. 58, 160169 (2022). https://doi.org/10.3901/jme.2022.08.160

    Article  Google Scholar 

  6. X.-Yu. Li, Zh.-H. Zhang, X. Cheng, X.-P. Liu, Sh.‑Zh. Zhang, J.-Ye. He, Q. Wang, and L.-J. Liu, “The investigation on Johnson−Cook model and dynamic mechanical behaviors of ultra-high strength steel M54,” Mater. Sci. Eng., A, 142693 (2022). https://doi.org/10.1016/j.msea.2022.142693

  7. X. H. Yang, S. H. Zhang, Z. T. Wang, L. N. Zhang, and B. Feng, “Characteristic of deformation for AerMet100 alloy at high temperatures,” J. Plast. Eng. 14, 121–126 (2007).

    CAS  Google Scholar 

  8. Q. F. Dai, R. B. Song, H. J. Cai, S. C. Yu, and Z. Gao, “Tensile mechanical behaviour of ultra-high strength cold rolled dual phase steel DP1000 at high strain rates,” Chin. J. Mater. Res. 1, 25–31 (2013).

    Google Scholar 

  9. N. D. Beynon, T. B. Jones, and G. Fourlaris, “Effect of high strain rate deformation on microstructure of strip steels tested under dynamic tensile conditions,” Mater. Sci. Technol. 21, 103–112 (2005). https://doi.org/10.1179/174328405x16234

    Article  ADS  CAS  Google Scholar 

  10. J. Qu, W. Dabboussi, F. Hassani, J. Nemes, and S. Yue, “Effect of microstructure on the dynamic deformation behavior of dual phase steel,” Mater. Sci. Eng., A 479, 93–104 (2008). https://doi.org/10.1016/j.msea.2007.06.020

    Article  CAS  Google Scholar 

  11. W. C. Zhang, H. R. Wang, D. N. Chen, and G. H. Lei, “Research on phase transformation of QP980 steel based on interrupted tests of tensile split hopkinson bar,” Acta Armamentarii, No. S2, 232–236 (2016).

    Google Scholar 

  12. A. C. Thompson and C. Thompson, “High strain rate characterization of advanced high strength steels,” Masters Abstracts Int. 45, 1652 (2006).

    Google Scholar 

  13. D. Dong, Ya. Liu, L. Wang, and L. Su, “Effect of strain rate on dynamic deformation behavior of DP780 steel,” Acta Metall. Sin. 49, 159–166 (2013). https://doi.org/10.3724/sp.j.1037.2012.00515

    Article  CAS  Google Scholar 

  14. M. T. Ma, Y. Zhao, J. Zhou, and G. Y. Li, “The response characteristics of high strength steel for automotive under high strain rates,” in Advanced High Strength Steel and Press Hardening, Ed. by Yi. Zhang (World Scientific, 2017), pp. 1–14. https://doi.org/10.1142/9789813207301_0015

    Book  Google Scholar 

  15. H. Ghadbeigi, C. Pinna, S. Celotto, and J. R. Yates, “Local plastic strain evolution in a high strength dual-phase steel,” Mater. Sci. Eng., A 527, 5026–5032 (2010). https://doi.org/10.1016/j.msea.2010.04.052

    Article  CAS  Google Scholar 

  16. Q. Dai, R. B. Song, and X. X. Guan, “Microstructure and properties of ultra-high strength ferrite–martensite dual phase steel tested under dynamic tensile conditions,” J. Mater. Eng. 04, 6–11 (2013).https://doi.org/10.3969/j.issn.1001-4381.2013.06.001

  17. S. Y. P. Allain, G. Geandier, J. C. Hell, M. Soler, F. Danoix, and M. Gouné, “In-situ investigation of quenching and partitioning by high energy X-ray diffraction experiments,” Scr. Mater. 131, 15–18 (2017). https://doi.org/10.1016/j.scriptamat.2016.12.026

    Article  CAS  Google Scholar 

  18. P. H. Thornton and C. L. Magee, “The interplay of geometric and materials variables in energy absorption,” J. Eng. Mater. Technol. 99, 114–120 (1977). https://doi.org/10.1115/1.3443419

    Article  CAS  Google Scholar 

  19. M. Itabashi and K. Kawata, “Carbon content effect on high-strain-rate tensile properties for carbon steels,” Int. J. Impact Eng. 24, 117–131 (2000). https://doi.org/10.1016/s0734-743x(99)00050-0

    Article  Google Scholar 

  20. T. Ogawa, M. Koyama, C. C. Tasan, K. Tsuzaki, and H. Noguchi, “Effects of martensitic transformability and dynamic strain age hardenability on plasticity in metastable austenitic steels containing carbon,” J. Mater. Sci. 52, 7868–7882 (2017). https://doi.org/10.1007/s10853-017-1052-3

    Article  ADS  CAS  Google Scholar 

  21. H. X. Yin, A. M. Zhao, Z. Z. Zhao, W. L. Yu, Z. Li, and J. L. Cao, “Effect of Mn content on microstructure and mechanical properties of a low carbon medium-manganese TRIP steel,” Mater. science & Technol. 22, 11–15 (2014).

    CAS  Google Scholar 

  22. W. P. Bao, Z. P. Xiong, F. M. Wang, J. Shu, and X. P. Ren, “Comparison of dynamic mechanical properties between pure iron (BCC) and Fe–30Mn–3Si–4Al TWIP steel (FCC),” Appl. Mech. Mater. 692, 179–186 (2014).

  23. A. Śmiglewicz and M. B. Jabłońska, “The effect of strain rate on the impact strength of the high-Mn steel,” in Metalurgija (2015), Vol. 54, pp. 631–654. https://hrcak.srce.hr/138273.

    Google Scholar 

  24. Ch.-Ch. Wu, Sh.-H. Wang, Ch.-Yu. Chen, J.-R. Yang, P.-K. Chiu, and J. Fang, “Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel,” Scr. Mater. 56, 717–720 (2007). https://doi.org/10.1016/j.scriptamat.2006.08.064

    Article  CAS  Google Scholar 

  25. Yo. Mazaheri, A. Kermanpur, and A. Najafizadeh, “A novel route for development of ultrahigh strength dual phase steels,” Mater. Sci. Eng., A 619, 1–11 (2014). https://doi.org/10.1016/j.msea.2014.09.058

    Article  CAS  Google Scholar 

  26. Y. N. Yu, “Fundamentals of Materials Science,” (2012).

  27. D. L. Ouyang, S. Q. Lu, X. Cui, X. J. Dong, C. Wu, and W. Qiu, “Study on critical strains of dynamic recrystallization during β process in TA15 titanium alloy using working hardening rate,” J. Aeronaut. Mater. 30, 17–23 (2010).

    CAS  Google Scholar 

  28. Ch.-Yo. Lee, J. Jeong, J. Han, S.-J. Lee, S. Lee, and Yo.-K. Lee, “Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite,” Acta Mater. 84, 1–8 (2015). https://doi.org/10.1016/j.actamat.2014.10.032

    Article  CAS  Google Scholar 

  29. Z. C. Li, H. Ding, R. D. K. Misra, Z. H. Cai, and H. X. Li, “Microstructural evolution and deformation behavior in the Fe–(6, 8.5)Mn–3Al–0.2C TRIP steels,” Mater. Sci. Eng., A 672 (6), 161–169 (2016). https://doi.org/10.1016/j.msea.2016.06.078

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number no. 51871136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cainian Jing or Tao Lin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhonglin Wu, Jing, C., Feng, Y. et al. The Effect of Strain Rate on the Microstructure and Mechanical Properties of Q&P 980 Steel. Phys. Metals Metallogr. 124, 1866–1876 (2023). https://doi.org/10.1134/S0031918X22600774

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22600774

Keywords:

Navigation