Skip to main content
Log in

High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-strength, low-alloy transformation-induced plasticity (TRIP) steels are advanced multiphase steel grades that combine high-strength levels with an excellent ductility, making them ideally suited for application in crash-relevant parts of automotive car bodies. The enhanced plastic hardening and deformability are due to a complex interaction between the microstructural phases and to the transformation of metastable austenite to martensite during plastic deformation. During high-strain-rate loading, not only the material but also the transformation will be influenced by adiabatic heating. The impact-dynamic properties of CMnAl- and CMnSi-TRIP steels were determined in the range of 500 to 2000 s−1 using a split Hopkinson tensile bar (SHTB) setup. Bake-hardening treatments were applied to study the effect of strain aging. The experiments show that strain-rate hardening is superior to thermal softening: yield stresses, deformation, and energy dissipation increase with the strain rate. Phenomenological material models were investigated to describe the strain-rate and temperature-dependent behavior of TRIP steels. Both the Johnson-Cook model and an extended version of the Ludwig model were found to give good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Vasilakos, J. Ohlert, K. Giasla, G.N. Haidemenopoulos, and W. Bleck: Steel Res., 2002, vol. 73 (6–7), pp. 249–52.

    CAS  Google Scholar 

  2. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  3. O. Matsumura and O. Sakuma: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 570–79.

    CAS  Google Scholar 

  4. Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98.

    CAS  Google Scholar 

  5. B.C. De Cooman, L. Samek, J. Mahieu, J. Van Slycken, P. Verleysen, J. Degrieck, L. Lin, L. Wang, X. Cheng Wei, and S. Peng: Proc. 2003 Fall Meeting of TMS and 45th ISS Mechanical Working and Steel Processing Conf., Vancouver, BC, Canada, 2003.

  6. J. Mahieu: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.

    CAS  Google Scholar 

  7. E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J. Van Humbeeck: Scripta Mater., 2001, vol. 44, pp. 885–92.

    Article  CAS  Google Scholar 

  8. A.K. Pickett, T. Pyttel, F. Payen, F. Lauro, N. Petrinic, H. Werner, and J. Christlein: Int. J. Impact Eng., 2004, vol. 30, pp. 853–72.

    Article  Google Scholar 

  9. P.J. Jacques, J. Ladriere, and F. Delannay: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2759–68.

    Google Scholar 

  10. A. Itami, M. Takahashi, and K. Ushioda: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1121–27.

    CAS  Google Scholar 

  11. L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng., A, 2001, vol. 313, pp. 145–52.

    Article  Google Scholar 

  12. E. Girault, P. Jacques, P. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, and F. Delannay: Mater. Characterization, 1998, vol. 40, pp. 111–18.

    Article  CAS  Google Scholar 

  13. H. Kolsky: Proc. Phys. Soc. London Sect. B, 1949, vol. 62, pp. 676–700.

    Article  Google Scholar 

  14. P. Verleysen and J. Degrieck: Int. J. Impact Eng., 2004, vol. 30, pp. 239–53.

    Article  Google Scholar 

  15. K.P. Staudhammer and L.E. Murr: Mater. Sci. Eng., 1980, vol. 44, pp. 97–113.

    Article  CAS  Google Scholar 

  16. L.E. Murr: in Materials at High Strain Rates, T.Z. Blazynski, ed., Elsevier Applied Science Publishers Ltd., New York, NY, 1987, pp. 1–46.

    Google Scholar 

  17. W.S. Lee and C.F. Lin: Mater. Sci. Technol., 2002, vol. 18, pp. 869–76.

    Article  CAS  Google Scholar 

  18. A.S. Khan and R. Liang: Int. J. Plast., 1999, vol. 15, pp. 1089–109.

    Article  CAS  Google Scholar 

  19. J. Mahieu: Ph.D. Thesis, Ghent University, Ghent, 2004.

    Google Scholar 

  20. A. Mark, D. Boyd, and E. Essadiqi: Int. Conf. on Advanced High Strength Sheet Steels for Automotive Applications Proc., Winterpark, CO, 2004, pp. 307–13.

  21. G.R. Johnson and W.H. Cook: Proc. 7th Int. Symp. Ballistics, The Hague, 1983, pp. 541–47.

  22. H. Zhao: Mater. Sci. Eng., A, 1997, vol. 230, pp. 95–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Slycken, J., Verleysen, P., Degrieck, J. et al. High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels. Metall Mater Trans A 37, 1527–1539 (2006). https://doi.org/10.1007/s11661-006-0097-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0097-8

Keywords

Navigation