Skip to main content

Advertisement

Log in

A Computational Investigation on Bending Deformation Behavior at Various Deflection Rates for Enhancement of Absorbable Energy in TRIP Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Transformation-induced plasticity (TRIP) steel might have a high energy-absorption characteristic because it could possibly consume impact energy by not only plastic deformation but also strain-induced martensitic transformation (SIMT) during deformation. Therefore, TRIP steel is considered to be suitable for automotive structures from the viewpoint of safety. Bending deformation due to buckling is one of the major collapse modes of automotive structures. Thus, an investigation on the bending deformation behavior and energy-absorption characteristic in TRIP steel at high deformation rate is indispensable to clarify the mechanism of better performance. Some past studies have focused on the improvement of mechanical properties by means of SIMT; however, the mechanism through which the energy-absorption characteristic in steel can be improved is still unclear. In this study, the three-point bending deformation behavior of a beam specimen made of type-304 austenitic stainless steel, a kind of TRIP steel, is investigated at various deflection rates by experiments and finite-element simulations based on a constitutive model proposed by one of the authors. After confirming the validity of the computation, the rate-sensitivity of energy absorption from the viewpoint of hardening behavior is examined and the improvement of the energy-absorption characteristic in TRIP steel including its mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: Int. J. Plast., 2000, Vol. 16, pp. 723–748.

    Article  Google Scholar 

  2. T. Iwamoto, T. Tsuta, and Y. Tomita: Int. J. Mech. Sci., 1998, vol. 40, pp. 173–182.

    Article  Google Scholar 

  3. A. Khan, M. Baig, S. Choi, H. Yang, and X. Sun: Int. J. Plast., 2012, vol. 30-31, pp. 1–17.

    Google Scholar 

  4. R. Mahnken, A. Schneidt, and T. Antretter: Int. J. Plast., 2009, vol. 25, pp. 183–204.

    Article  Google Scholar 

  5. A. Rusinek, J.A. Rodríguez-Martínez, R. Pesci, and J. Capelle: J. Theor. Appl. Mech., 2010, vol. 48, pp. 1027–1042.

    Google Scholar 

  6. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–253.

    Article  Google Scholar 

  7. Y. Tomita and T. Iwamoto: Int. J. Mech. Sci., 1995, vol. 37, pp. 1295–1305.

    Article  Google Scholar 

  8. R. Zaera, J.A. Rodríguez-Martínez, .A. Casado, J. Fernández-Sáez, A. Rusinek, and R. Pesci: Int. J. Plast., 2012, vol. 29, pp. 77–101.

    Article  Google Scholar 

  9. R. Zaera, R.A Rodríguez-Martínez, and D. Rittel: Int. J. Plast., 2013, vol. 40, pp. 185–201.

    Article  Google Scholar 

  10. H. Huh, S.B. Kim, J.H. Song, J.H. Lim: Int. J. Mech. Sci., 2008, vol. 50, pp. 918-931.

    Article  Google Scholar 

  11. J. Huh, H. Huh, and C.S. Lee: Int. J. Plast., 2013, vol. 44, pp. 23–46.

    Article  Google Scholar 

  12. L. Durrenberger, D. Even, A. Molinari, and A. Rusinek: J. Phys. IV., 2006, vol. 134, pp. 1287–1293.

    Google Scholar 

  13. J.A. Nemes and J. Eftis: Int. J. Plast., 1993, vol. 9, pp. 243–270.

    Article  Google Scholar 

  14. T. Rong, L. Lin, B.C. De Cooman, W. Xi-chen, and S. Peng: ISIJ Int., 2006, vol. 13, pp. 51–56.

    Google Scholar 

  15. S. Curtze, V.T. Kuokkala, M. Hokka, and P. Peura: Mater. Sci. Eng. A, 2009, vol. 507, pp. 124–131.

    Article  Google Scholar 

  16. J.A. Rodríguez-Martínez, R. Pesci, and A. Rusinek: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5974–5982.

    Article  Google Scholar 

  17. J.A. Rodríguez-Martínez, A. Rusinek, R. Pesci, and R. Zaera: Int. J. Solids Struct., 2013, vol. 2, pp. 339–351.

    Article  Google Scholar 

  18. R. Zaera, J.A. Rodríguez-Martínez, G. Vadillo, and J. Fernández-Sáez: J. Mech. Phys. Solids, 2014, vol. 64, pp. 316–337.

    Article  Google Scholar 

  19. T. Iwamoto and T. Tsuta: Int. J. Plast., 2002, vol. 18, pp. 1583–1606.

    Article  Google Scholar 

  20. Y. Chuman, K. Minuras, K. Kaizu, and S. Tanimura: Int. J. Impact Eng., 1997, vol. 19, pp. 165–174.

    Article  Google Scholar 

  21. T. Yokoyama, K. Kishida: Exp. Mech., 1989, vol. 29, pp. 188–194.

    Article  Google Scholar 

  22. Y. Tomita and T. Iwamoto: Int. J. Mech. Sci., 2001, vol. 43, pp. 2017–2034.

    Article  Google Scholar 

  23. G.B. Olson and M. Cohen: Metall. Trans. A., 1975, vol. 6A, pp. 791–795.

    Article  Google Scholar 

  24. R.G. Stringfellow, D.M. Parks, and G.B. Olson: Acta Metall. Mater., 1992, vol. 40, pp. 1703–1716.

    Article  Google Scholar 

  25. T. Iwamoto, M. Cherkaoui, and T. Sawa: Int. J. Mod. Phys. B, 2008, vol. 22, pp. 5985–5990.

    Article  Google Scholar 

  26. T. Iwamoto and T. Tsuta: Int. J. Plast., 2000, vol. 16, pp. 791–804.

    Article  Google Scholar 

  27. T. Iwamoto, T. Kawagishi, T. Tsuta, S. Morita: JSME Int. J. Ser. A, 2001, vol. 44, pp. 443–452.

    Article  Google Scholar 

  28. T. Iwamoto: Int. J. Plast., 2004, vol. 20, pp. 841–869.

    Article  Google Scholar 

  29. T. Iwamoto and T. Tsuta: Key Eng. Mater., 2004, vol. 274–276, pp. 679–684.

    Article  Google Scholar 

  30. Y. Tomita and Y. Shibutani: Int. J. Plast., 2000, vol. 16, pp. 769–789.

    Article  Google Scholar 

  31. R.F. Kubler, M. Berveiller, and P. Buessler: Int. J. Plast., 2011, vol. 27, pp. 299–327.

    Article  Google Scholar 

  32. M. Fischlschweiger, G. Cailletaud, and T. Antretter: Int. J. Plast., 2012, vol. 37, pp. 53–71.

    Article  Google Scholar 

  33. D. Peirce, C.F. Shih, A. Needleman: Composite Struct., 1984, vol. 118, pp. 875–887.

    Article  Google Scholar 

  34. J.D. Eshelby: Proc. R. Soc. Lond., 1957, vol. A241, pp. 376–396.

    Article  Google Scholar 

  35. J. Talonen: Effect of Strain-Induced α′-Martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels. Doctoral Dissertation, Helsinki University of Technology, 2007.

Download references

Acknowledgment

We wish to thank Mr. Hashimoto of Webast Japan Corporation and Ms. Shi of Ondo Corporation for their assistance with the experimental investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Iwamoto.

Additional information

Manuscript submitted January 20, 2016.

Appendix A: Derivation of Eq. [7]

Appendix A: Derivation of Eq. [7]

The maximum bending strain in the case of small deformation is calculated in the case that the shape of the deformed specimen is assumed to be an arc as,

$$ \delta_{\text{n}} = \varepsilon = \frac{\Delta L}{L} = \frac{h}{2\rho }, $$
(A1)

where ε is bending strain; L is span length; ∆L is the change in length at the lower surface of specimen, h is the height of specimen; ρ is radius of curvature as shown in Figure A1. With the curvature is assumed to be constant in the entire region of the deformed beam, ρ can be calculated as

$$ \rho^{2} = \left( {\frac{L}{2}} \right)^{2} + (\rho - \delta )^{2} \;{\text{and}}\;\rho = \frac{{L^{2} }}{8\delta } + \frac{\delta }{2} = \frac{{L^{2} }}{8\delta }\{ 1 + 4(\delta /L)^{2} \} , $$
(A2)

where δ is the deflection. (δ/L)2 is considered to be quite small and can be neglected. Thus, we can obtain the following equation,

$$ \rho = \frac{{L^{2} }}{8\delta }. $$
(A3)

From Eqs. [A1] and [A3], the normalized deflection is calculated as

$$ \delta_{\text{n}} = \frac{h}{2}\frac{8\delta }{{L^{2} }} = \frac{4h}{{L^{2} }}\delta . $$
(A4)
Fig. A1
figure 18

The shape of the (a) un-deformed and (b) deformed beam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H.T., Iwamoto, T. A Computational Investigation on Bending Deformation Behavior at Various Deflection Rates for Enhancement of Absorbable Energy in TRIP Steel. Metall Mater Trans A 47, 3897–3911 (2016). https://doi.org/10.1007/s11661-016-3565-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3565-9

Keywords

Navigation