Skip to main content

Advertisement

Log in

Microstructural evolution and superplasticity of Al-5.8Mg-0.23Mn alloys processed by reciprocating extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study developed the reciprocating extrusion method to refine the inclusions and grain structure of Al-5.8Mg-0.23Mn alloys to enhance their strength and superplasticity without prior homogenization treatment. Alloy cast billets were extruded with an extrusion ratio of 10:1 at 450 °C for one, five, or ten passes. The grain size was reduced to 4.6 µm, and the coarse inclusions refined to 2 µm, after ten passes. A subgrain structure was formed in the interior of the fine grains, indicating that dynamic recrystallization occurred during extrusion. In this study, dynamic recrystallization in the billet was repeatedly induced by a number of extrusion passes until a limiting grain size was obtained. Thereafter, dynamic recrystallization was no longer activated because grain boundary sliding, instead of dislocation gliding, accommodated the deformation strain required for extrusion. The alloys extruded in ten-passes extrusion were found to be stronger and more ductile than commercial Al-Mg alloys and showed improved superplastic behavior at 500 °C not only from low to high strain rate but also with a small flow stress of less than 30 MPa. These advantages demonstrate that reciprocating extrusion can produce Al-Mg alloys with improved mechanical properties making them good candidates for high-strain-rate superplastic forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Margaret: Mater. Eng. (Cleveland), 1990, vol. 107, pp. 16–19.

    Google Scholar 

  2. T.G. Nieh, J. Wadsworth, and O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, United Kingdom, 1997, pp. 58–68.

    Google Scholar 

  3. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev: Mater. Sci. Eng. A, 1991, vol. A137, pp. 35–40.

    CAS  Google Scholar 

  5. N.A. Akhamadeev, N.P. Kobelev, R.R. Mulyukov, Y.M. Soifer, and R.Z. Valiev: Acta Metall. Mater., 1993, vol. 41, pp. 1041–46.

    Article  Google Scholar 

  6. V.M. Segal: Mater. Sci. Eng. A, 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  7. Z. Horita, M. Furukawa, J. Wang, M. Nemoto, R.Z. Valiev, Y. Ma, and T.G. Langdon: Light-Weight Alloys for Aerospace Applications III: The Development and Characteristics of an Aluminum-Based Alloy with Ultrafine Grain Size, TMS, Warrendale, PA, 1995, pp. 245–54.

    Google Scholar 

  8. R.Z. Valiev, R.R. Mulyukov, V.V. Ovchinnikov, and V.A. Shabashov: Scripta Metall. Mater., 1991, vol. 25, pp. 2717–22.

    Article  CAS  Google Scholar 

  9. A. Korbel and M. Richert: Acta Metall. Mater., 1985, vol. 33, pp. 1971–78.

    Article  CAS  Google Scholar 

  10. H.J. Zughauer and J. Nutting: Mater. Sci. Technol., 1992, vol. 8, pp. 1104–07.

    Google Scholar 

  11. M. Richert, H.P. Stüwe, M.J. Zehetbauer, J. Richert, R. Pippan, C. Motz, and E. Schafler: Mater. Sci. Eng. A, 2003, vol. A355, pp. 180–85.

    CAS  Google Scholar 

  12. J.W. Yeh, S.Y. Yuan, and C.H. Peng: Mater. Sci. Eng. A, 1998, vol. A252, pp. 212–21.

    CAS  Google Scholar 

  13. J.W. Yeh, S.Y. Yuan, and C.H. Tsau: Mater. Trans. JIM, 1998, vol. 40, pp. 233–39.

    Google Scholar 

  14. S.Y. Yuan, J.W. Yeh, and C.H. Tsau: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2503–12.

    Google Scholar 

  15. H.S. Chu, K.S. Liu, and J.W. Yeh: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2587–96.

    Article  CAS  Google Scholar 

  16. H.S. Chu, K.S. Liu, and J.W. Yeh: Mater. Sci. Eng. A, 2000, vol. A277, pp. 25–32.

    CAS  Google Scholar 

  17. H.S. Chu, K.S. Liu, and J.W. Yeh: J. Mater. Res., 2001, vol. 16, pp. 1372–80.

    CAS  Google Scholar 

  18. S.W. Lee, J.W. Yey, and Y.S. Liao: Adv. Eng. Mater., 2004, vol. 6, pp. 936–43.

    Article  CAS  Google Scholar 

  19. S.W. Lee, H.Y. Wang, Y.L. Chen, J.W. Yeh and C.F. Yang: Adv. Eng. Mater., 2004, vol. 6, pp. 948–52.

    Article  CAS  Google Scholar 

  20. A. Korbel and P. Martin: Acta. Metall. Mater., 1986, vol. 34, pp. 1905–09.

    Article  CAS  Google Scholar 

  21. A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin, and H.W. Erbsloh: Acta Metall. Mater., 1986, vol. 34, pp. 1999–2009.

    Article  CAS  Google Scholar 

  22. R. Verma, A.K. Ghosh, S. Kim, and C. Kim: Mater. Sci. Eng. A, 1995, vol. A191, pp. 143–50.

    CAS  Google Scholar 

  23. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 553–64.

    Article  CAS  Google Scholar 

  24. K. Kannan, C.H. Johnson, and C.H. Hamilton: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1211–20.

    Article  CAS  Google Scholar 

  25. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev: Acta Mater., 1998, vol. 46, pp. 2789–800.

    Article  CAS  Google Scholar 

  26. S.L. Lee and S.T. Wu: Metall. Trans. A, 1986, vol. 17A, pp. 833–41.

    CAS  Google Scholar 

  27. S.R. Chen and K.F. Hsu: China Steel Tech. Rep., 1999, vol. 13, pp. 38–48.

    CAS  Google Scholar 

  28. S.Y. Yuan, C.H. Peng, and J.W. Yeh: Mater. Sci. Technol. Ser., 1999, vol. 15, pp. 683–88.

    CAS  Google Scholar 

  29. F.J. Humphreys: Acta Metall. Mater., 1977, vol. 25, pp. 1323–44.

    Article  CAS  Google Scholar 

  30. E. Nes, N. Ryum, and O. Hunderi: Acta Metall. Mater., 1985, vol. 33, pp. 11–22.

    Article  CAS  Google Scholar 

  31. T. Furu, K. Marthinsen, and E. Nes: Mater. Sci. Forum, 1993, vol. 113–115, pp. 41–54.

    Article  Google Scholar 

  32. J.Y. Chang, J.S. Yoon, and G.H. Kim: Scripta Mater., 2001, vol. 45, pp. 347–54.

    Article  CAS  Google Scholar 

  33. W.J. Kim, E. Taleff, and O.D. Sherby: Scripta Mater., 1995, vol. 32, pp. 1625–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SW., Yeh, JW. Microstructural evolution and superplasticity of Al-5.8Mg-0.23Mn alloys processed by reciprocating extrusion. Metall Mater Trans A 36, 2225–2234 (2005). https://doi.org/10.1007/s11661-005-0341-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0341-7

Keywords

Navigation