Skip to main content
Log in

Microstructural Modeling of Intergranular Fracture in Tricrystals With Random Low- and High-Angle Grain Boundaries

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Intergranular (IG) fracture behavior near triple junctions (TJs) in f.c.c. tricrystals with a variety of grain boundary (GB) misorientations has been investigated. Based on a dislocation-density GB interaction scheme, critical fracture conditions were coupled to evolving dislocation-density pileups and local stresses by using a dislocation-density-based crystalline plasticity formulation within a nonlinear finite-element framework to elucidate the effects of local GB structure, dislocation–GB interactions, and misorientations on IG crack propagation in f.c.c. crystalline materials. Tricrystals with low-angle GBs had higher fracture toughness than tricrystals with high-angle GBs. In TJs with a combination of random low- and high-angle GBs, the formation of dislocation-density pileups in the high-angle GB led to IG crack propagation along the high-angle GB rather than along the low-angle GB. These predictions, which are consistent with experimental observations, indicate that fracture behavior near TJs is controlled by highly local, evolving, and interrelated events, such as dislocation-density pileups and GB misorientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Chiba, S. Hanada, S. Watanabe, T. Abe, and T. Obana, Acta Metall. Mater. 42, 1733 (1994).

    Article  Google Scholar 

  2. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast 25, 1655 (2009).

    Article  Google Scholar 

  3. J.-Q. Su, M. Demura, and T. Hirano, Acta Mater. 51, 2505 (2003).

    Article  Google Scholar 

  4. S. Zaefferer, J.-C. Kuo, Z. Zhao, M. Winning, and D. Raabe, Acta Mater. 51, 4719 (2003).

    Article  Google Scholar 

  5. Z.F. Zhang and Z.G.W. Eckert, J. Mater. Res. 18, 1031 (2003).

    Article  Google Scholar 

  6. K.T. Aust, U. Erb, and G. Palumbo, Mater. Sci. Eng., A 176, 329 (1994).

    Article  Google Scholar 

  7. I.A. Ovid’ko and A.G. Sheinerman, Acta Mater. 52, 1201 (2004).

    Article  Google Scholar 

  8. S. Kobayashi, S. Tsurekawa, and T. Watanabe, Philos. Mag. 86, 5419 (2006).

    Article  Google Scholar 

  9. T. Watanabe and S. Tsurekawa, Acta Mater. 47, 4171 (1999).

    Article  Google Scholar 

  10. A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov, J. Mech. Phys. Solids 52, 1213 (2004).

    Article  MathSciNet  Google Scholar 

  11. D.J. Luscher, J.R. Mayeur, H.M. Mourad, A. Hunter, and M.A. Kenamond, Int. J. Plast 76, 111 (2016).

    Article  Google Scholar 

  12. M. de Koning and R.J. Kurtz, V.V Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, and M. Nomura. J. Nucl. Mater. 323, 281 (2003).

    Article  Google Scholar 

  13. Q. Wu and M.A. Zikry, Mater. Sci. Eng. A 661, 32 (2016).

    Article  Google Scholar 

  14. P. Shantraj and M.A. Zikry, J. Mech. Phys. Solids 61, 1091 (2013).

    Article  MathSciNet  Google Scholar 

  15. R.J. Asaro and J.R. Rice, J. Mech. Phys. Solids 25, 309 (1977).

    Article  Google Scholar 

  16. P. Shanthraj and M.A. Zikry, J. Mech. Phys. Solids 61, 1091 (2013).

    Article  MathSciNet  Google Scholar 

  17. T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Scripta Metall. 23, 799 (1989).

    Article  Google Scholar 

  18. A. Ma, F. Roters, and D. Raabe, Int. J. Solids Struct. 43, 7287 (2006).

    Article  Google Scholar 

  19. M. Koning, R. Miller, V.V. Bulatov, and F.F. Abraham, Philos. Mag. A 82, 2511 (2002).

    Article  Google Scholar 

  20. L. Scardia, R.H.J. Peerlings, M.A. Peletier, and M.G.D. Geers, J. Mech. Phys. Solids 70, 42 (2014).

    Article  MathSciNet  Google Scholar 

  21. Q. Wu and M.A. Zikry, Mater. Sci. Eng., A 661, 32 (2016).

    Article  Google Scholar 

  22. O. Rezvanian, M.A. Zikry, and A.M. Rajendran, Mater. Sci. Eng., A 494, 80 (2008).

    Article  Google Scholar 

  23. K. Kashihara and F. Inoko, Acta Mater. 49, 3051 (2001).

    Article  Google Scholar 

  24. Y. Pan, B.L. Adams, T. Olson, and N. Panayotou, Acta Mater. 44, 4685 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This material is supported by the U.S. Office of Naval Research as a Multi-Disciplinary University Research Initiative under grant number N00014-10-1-0958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Zikry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bond, D.M., Zikry, M.A. Microstructural Modeling of Intergranular Fracture in Tricrystals With Random Low- and High-Angle Grain Boundaries. JOM 69, 856–862 (2017). https://doi.org/10.1007/s11837-017-2291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2291-0

Keywords

Navigation