Skip to main content
Log in

Analysis of lattice parameter changes following deformation of a 0.19C-1.63Si-1.59Mn transformation-induced plasticity sheet steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenite and ferrite lattice parameters were monitored using X-ray diffraction subsequent to deformation in uniaxial and biaxial tension and plane straining of a 0.19C-1.63Si-1.59Mn transformation-induced plasticity (TRIP) sheet steel. Details from peak position results suggest the presence of stacking faults in the austenite phase, especially after deformation in uniaxial tension. The results also indicate residual stress or composition effects (through changes in the average carbon concentration due to selective transformation of lower carbon regions of austenite). Compressive residual stresses in the ferrite matrix were measured, and found to increase with increasing effective strain in specimens tested in biaxial tension and plane strain. Strain partitioning between softer ferrite and harder austenite (and possibly bainite or martensite) may be responsible for these residual compressive stresses in the ferrite, although volume expansion from the γα′ transformation and texture gradients through the sheet thickness are also possible contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Streicher: Master’s Thesis, Colorado School of Mines, Golden, CO, 2002.

    Google Scholar 

  2. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  CAS  Google Scholar 

  3. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 366–75.

    Article  CAS  Google Scholar 

  4. Q. Furnémont, P. Jacques, T. Pardoen, F. Lani, S. Godet, P. Harlet, K. Conlon, and F. Delannay: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, B.C. DeCooman, ed., Wissenschaftsverlag Mainz GmbH, Aachen, Germany, 2002, pp. 303–09.

    Google Scholar 

  5. K. Sugimoto, M. Kobayashi, and S. Yasuki: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2637–44.

    Article  CAS  Google Scholar 

  6. K. Sugimoto, M. Kobayashi, H. Matsushima, and S. Hashimoto: Trans. Jpn. Soc. Mech. Eng., 1995, vol. 16A, pp. 80–86 (in Japanese).

    Article  Google Scholar 

  7. K. Sugimoto, M. Kobayashi, S. Yasuki, and S. Hashimoto: Mater. Trans. JIM, 1995, vol. 36 (5), pp. 632–38.

    Article  CAS  Google Scholar 

  8. L. Barbé, B.C. De Cooman, and K. Conlon: Z. Metallkd., 2002, vol. 93, pp. 1217–27.

    Article  Google Scholar 

  9. B.D. Cullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Co., Inc., Reading, MA, 1978, pp. 285–292, 350–368, 411–415, 447–456, and 508.

    Google Scholar 

  10. B.E. Warren: in X-ray Diffraction, Morris Cohen, ed., Addison-Wesley Publishing Company, Inc., Reading, MA, 1969, pp. 275–98.

    Google Scholar 

  11. S.C. Baik, S.H. Park, O. Kwon, D. Kim, and K.H. Oh: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, B.C. DeCooman, ed., Wissenschaftsverlag Mainz GmbH, Aachen, Germany, 2002, pp. 303–09.

    Google Scholar 

  12. A.K. De, J.G. Speer, and D.K. Matlock: Adv. Mater. Processes, 2003, vol. 161, pp. 27–30.

    CAS  Google Scholar 

  13. ASTM E8-01, 2001 Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2001, vol. 3.01, p. 58.

    Google Scholar 

  14. K.S. Raghavan: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2075–84.

    Article  CAS  Google Scholar 

  15. I.C. Noyan and J.B. Cohen: Residual Stress, Springer-Verlag, New York, NY, 1987, pp. 122–23.

    Book  Google Scholar 

  16. N.J. Wagner, J.P. Boisseau, and E.N. Aqua: Trans. TMS-AIME, 1965, vol. 233, pp. 1280–86.

    CAS  Google Scholar 

  17. C.N.J. Wagner: in Local Atomic Arrangements Studied by X-ray Diffraction, J.B. Cohen and J.E. Hilliard, eds., American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., Chicago, IL, 1965–66, vol. 36, pp. 219–69.

    Google Scholar 

  18. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 2001, pp. 375–77.

    Google Scholar 

  19. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, NY, 1986, p. 50.

    Google Scholar 

  20. W.C. Johnson: in Lectures on the Theory of Phase Transformations, 2nd ed., H.I. Aaronson, ed., TMS, Warrendale, PA, 1975, p. 64.

    Google Scholar 

  21. J.J. Moverare and M. Odén: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 57–71.

    Article  CAS  Google Scholar 

  22. J. Johansson, M. Odén, and X.-H. Zeng: Acta Mater., 1999, vol. 47 (9), pp. 2669–84.

    Article  CAS  Google Scholar 

  23. P. Jacques and E. Girault: 19th ASM Heat Treating Society Conf. Proc., ASM INTERNATIONAL, Materials Park, OH, 1999, pp. 24–30.

    Google Scholar 

  24. P.J. Jacques, J. Ladriére, and F. Delannay: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.

    Article  CAS  Google Scholar 

  25. A. Itami, M. Takahashi, and K. Ushioda: Iron Steel Inst. Jpn. Int., 1995, vol. 35 (9), pp. 1121–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streicher-Clarke, A.M., Speer, J.G., Matlock, D.K. et al. Analysis of lattice parameter changes following deformation of a 0.19C-1.63Si-1.59Mn transformation-induced plasticity sheet steel. Metall Mater Trans A 36, 907–918 (2005). https://doi.org/10.1007/s11661-005-0285-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0285-y

Keywords

Navigation