Skip to main content
Log in

Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The load partitioning between two phases in a cold-rolled duplex stainless steel has been experimentally studied in situ by X-ray diffraction, for different loading directions. It was found that the load partitioning between the two phases is dependent on the loading direction. For loading in the rolling direction, both phases deform plastically to the same degree, while more plastic deformation occurs in the austenitic phase during loading in the transverse direction. For loading in the 45-deg direction, more plastic deformation occurs in the ferritic phase. The strong crystallographic texture in the ferritic phase makes the material anisotropic, with a higher stiffness and yield strength in the transverse direction compared to the rolling direction. The measured texture was used as input to theoretical predictions of both elastic and plastic anisotropy. The plastic anisotropy was predicted by assuming intragranular slip as the main deformation mechanism. The predicted anisotropic material properties were then used in finite-element simulations to study the flow behavior of the material in different directions. The predicted flow behavior was found to be in good agreement with the experimentally observed load partitioning between the phases for loading in the rolling and transverse directions. However, the yield strength of the ferritic phase during loading in the 45-deg direction was found to be lower than what was predicted. The reason for this is the difference in slip characteristics in different sample directions, because of the morphological texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Johansson, M. Odén, and X.-H. Zeng: Acta Mater., 1999, vol. 47, pp. 2669–84.

    Article  CAS  Google Scholar 

  2. H. Böhm, F. Rammerstorfer, F. Fischer, and T. Siegmund: J. Eng. Mater. Technol., 1994, vol. 116, pp. 268–73.

    Google Scholar 

  3. F. Fischer, F. Rammerstorfer, and F. Bauer: Metall. Trans. A, 1990, vol. 21A, pp. 935–48.

    CAS  Google Scholar 

  4. T. Siegmund, F. Fischer, and E. Werner: Mater. Sci. Eng., 1993, vol. A169, pp. 125–34.

    CAS  Google Scholar 

  5. T. Siegmund, E. Werner, and F.D. Fischer: J. Mech. Phys. Solids, 1995, vol. 43, pp. 495–532.

    Article  CAS  Google Scholar 

  6. V. Hauk and P. Stuitje: Z. Metallkd., 1985, vol. 76, pp. 445–51.

    CAS  Google Scholar 

  7. V. Hauk and P. Stuitje: Z. Metallkd., 1985, vol. 76, pp. 471–74.

    CAS  Google Scholar 

  8. K. Inal, P. Gergaud, M. Francois, and J.L. Lebrun: Scand. J. Metall., 1999, vol. 28, pp. 139–50.

    CAS  Google Scholar 

  9. G. Wahlberg and G.L. Dunlop: Proc. Stainless Steels ’87, Institute of Metals, London, 1987, pp. 291–99.

    Google Scholar 

  10. H.J. Bunge, A. uL-Haq, and H. Weiland: INFACON 6, SAIMM, Johannesburg, 1992, vol. 2, pp. 197–201.

    Google Scholar 

  11. W. Hutchinson, K. Ushioda, and G. Runnsjö: Mater. Sci. Technol., 1985, vol. 1, pp. 728–31.

    CAS  Google Scholar 

  12. A. ul-Haq, H. Weiland, and H. Bunge: Mater. Sci. Technol., 1994, vol. 10, pp. 289–98.

    CAS  Google Scholar 

  13. J.L. Song and P.S. Bate: Acta Mater., 1997, vol. 45, pp. 2747–57.

    Article  CAS  Google Scholar 

  14. D. Raabe: J. Mater. Sci., 1996, vol. 31, pp. 3839–45.

    Article  CAS  Google Scholar 

  15. D. Raebe and K. Lücke: in ICOTOM-10, H.J. Bunge, ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1993, vol. 1, pp. 597–610.

    Google Scholar 

  16. D. Raabe: Mater. Sci. Technol, 1995, vol. 11, pp. 461–8.

    CAS  Google Scholar 

  17. J. Johansson and M. Odén: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1557–70.

    CAS  Google Scholar 

  18. H.J. Bunge: Int. Mater. Rev., 1987, vol. 32, pp. 265–91.

    CAS  Google Scholar 

  19. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, Oxford, United Kingdom, 1993.

    Google Scholar 

  20. G.Y. Chin and W.L. Mammel: Trans. TMS-AIME, 1967, vol. 239, pp. 1400–05.

    CAS  Google Scholar 

  21. H.R. Piehler and W.A. Backofen: Metall. Trans., 1971, vol. 2, pp. 249–55.

    CAS  Google Scholar 

  22. M. Barral, J. Lebrun, J. Sprauel, and G. Maeder: Metall. Trans. A, 1987, vol. 18, pp. 1229–38.

    Google Scholar 

  23. H. Behnken: Mater. Sci. Forum, 2000, vols. 347–349, pp. 273–78.

    Google Scholar 

  24. I.C. Noyan and J.B. Cohen: Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, New York, NY, 1987.

    Google Scholar 

  25. R.A. Winholtz and J.B. Cohen: Aust. J. Phys., 1988, vol. 41, pp. 189–99.

    Google Scholar 

  26. K. Inal and J.L. Lebrun: in ICRS-5, T. Ericsson, M. Odén, and A. Andersson, eds., Linköping Universitet, Linköping, Sweden, 1997, vol. 1, pp. 472–77.

    Google Scholar 

  27. I.C. Noyan: Metall. Trans. A, 1983, vol. 14A, pp. 1907–14.

    CAS  Google Scholar 

  28. ABAQUS/Standard: User’s Manual, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, 1998.

    Google Scholar 

  29. M. Nygårds, D. Chandrasekaran, and P. Gudmundson: in MRS, Multiscale Modelling of Materials—2000 (USA), Materials Research Society, Pittsburgh, PA, 2000, pp. Z8.8.1-Z8.8.6.

    Google Scholar 

  30. R. Hill: Proc. Phys. Soc., 1952, vol. A65, pp. 349–54.

    Google Scholar 

  31. J. Foct and N. Akdut: Scripta Metall., 1993, vol. 29, pp. 153–58.

    Article  CAS  Google Scholar 

  32. M. Blicharski: Met. Sci., 1984, vol. 18, pp. 99–102.

    Article  CAS  Google Scholar 

  33. L.-Å. Norström: Scand. J. Metall., 1977, vol. 6, pp. 145–50.

    Google Scholar 

  34. R. Sandstöm and H. Bergqvist: Scand. J. Metall., 1977, vol. 6, pp. 156–69.

    Google Scholar 

  35. F.B. Pickering: in Stainless Steel ’84, The Institute of Metals, London, 1984, vol. 1, p. 2.

    Google Scholar 

  36. H. Nordberg: Innovation Stainless Steels, Associazione Italiana di Metallurgia, Milan, 1993, p. 2.217.

    Google Scholar 

  37. K. Kamachi, T. Okada, M. Kawano, S. Namba, T. Ishida, N. Tani, and T. Kubohori: in Progress in Science and Engineering of Composites, ICCM-IV, T. Hayashi, K. Kawata, and S. Umekawa, eds., JSCM, Tokyo, 1982, p. 1383.

    Google Scholar 

  38. A. Piñol-Juez, A. IzaMendia, I. Gutierrez, and J.J. Urcola: Key Eng. Mater., 1997, vol. 127, pp. 1025–32.

    Article  Google Scholar 

  39. A Piñol-Juez, A. IzaMendia, and I. Gutierrez: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1671–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moverare, J.J., Odén, M. Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel. Metall Mater Trans A 33, 57–71 (2002). https://doi.org/10.1007/s11661-002-0005-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0005-9

Keywords

Navigation