Skip to main content
Log in

The influence of friction stir processing parameters on microstructure of as-cast NiAl bronze

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of friction stir processing (FSP) parameters on the evolution of microstructure in an equilibrium-cooled, as-cast NiAl bronze (NAB) material was evaluated by optical microscopy (OM) and transmission electron microscopy (TEM) methods. A threaded pin tool was employed and tool rotation and traversing rates were varied in order to examine the spatial variation of stir zone microstructures in relation to FSP parameters. For processing at low rotation and traversing rates, the microstructure throughout the stir zone consists of elongated and banded grains of the primary α and transformation products of the β phase. Such microstructures reflect severe deformation at temperatures up to ∼900 °C in the α+β two-phase region for this NAB material. Increasing rotation and traversing rates, coarse Widmanstätten α near the surface in contact with the tool became apparent. The appearance of this constituent reflects nearly complete transformation to β during FSP with peak temperatures of ∼1000 °C. Also, complex stir zone flow patterns, often referred to as onion ring structures, become distinct in the mid regions of the stir zones as rotation and traversing rates increase. Schematic representations illustrating the effect of FSP parameters on thermal cycles at various locations in stir zones were prepared based on microstructure observations. Thus, processing at higher rotation and traversing rates results in higher peak temperatures near the surface in contact with the tool but also in steeper temperature gradients when compared to lower rotation and traversing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Mishra: Adv. Mater. Processes, 2003, vol. 161 (10), pp. 43–46.

    CAS  Google Scholar 

  2. R.S. Mishra, Z.Y. Ma, and I. Charit: Mater. Sci. Eng. A, 2003, vol. A341, pp. 307–10.

    CAS  Google Scholar 

  3. Z.Y. Ma, R.S. Mishra, and M.W. Mahoney: in Friction Stir Welding and Processing II, K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and T. Lienert, eds., TMS, Warrendale, PA, 2003, pp. 221–30.

    Google Scholar 

  4. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee: Scripta Mater., 2000, vol. 42, pp. 163–68.

    CAS  Google Scholar 

  5. R.S. Mishra and M.W. Mahoney: in Superplasticity in Advanced Materials—Proc. ICSAM2000, N. Chandra, ed., Materials Science Forum, Trans Tech Publications, Aedermannsdorf, Switzerland, 2001, vols. 357–359, pp. 507–14.

    Google Scholar 

  6. Z.Y. Ma, R.S. Mishra, and M.W. Mahoney: Acta Mater., 2002, vol. 50, pp. 4419–30.

    Article  CAS  Google Scholar 

  7. P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney: Scripta Mater., 2001, vol. 44, pp. 61–66.

    Article  CAS  Google Scholar 

  8. I. Charit and R.S. Mishra: Mater. Sci. Eng. A, 2003, vol. A359, pp. 290–96.

    CAS  Google Scholar 

  9. Z.Y. Ma, R.S. Mishra M.W. Mahoney, and R. Grimes: Mater. Sci. Eng. A, 2003, vol. A351, pp. 148–53.

    CAS  Google Scholar 

  10. Y.S. Sato, M. Urata, and H. Kokawa: Metall. Mater. Trans. A, 2002, vol. 33A, p. 625–35.

    Google Scholar 

  11. H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, and M. Ushio: Mater. Sci. Eng. A, 2004, vol. A371, pp. 160–69

    CAS  Google Scholar 

  12. M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor: Mater. Sci. Eng. A, 2002, vol. A323, pp. 160–66.

    CAS  Google Scholar 

  13. M.A. Sutton, A.P. Reynolds, B. Yang, and R. Taylor: Mater. Sci. Eng. A, 2003, vol. A354, pp. 6–16.

    CAS  Google Scholar 

  14. B. Yang, J. Yan, M.A. Sutton, and A.P. Reynolds: Mater. Sci. Eng. A, 2004, vol. A364, pp. 55–65.

    CAS  Google Scholar 

  15. M.A. Sutton, B. Yang, A.P. Reynolds, and J. Yan: Mater. Sci. Eng. A, 2004, vol. A364, pp. 66–74.

    CAS  Google Scholar 

  16. K. Oh-ishi and T.R. McNelley: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2951–61.

    Article  CAS  Google Scholar 

  17. P. Brezina: Int. Met. Rev., 1982, vol. 27, pp. 77–120.

    Google Scholar 

  18. F. Hasan, A. Jahanafrooz, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1982, vol. 13A, pp. 1337–45.

    Google Scholar 

  19. F. Hasan, G.W. Lorimer, and N. Ridley: J. Phys., 1982, vol. 43, pp. C4-653–C4-58.

    Google Scholar 

  20. A. Jahanafrooz, F. Hasan, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1983, vol. 14A, pp. 1951–56.

    CAS  Google Scholar 

  21. F. Hasan, G.W. Lorimer, and N. Ridley: Met. Sci., 1983, vol. 17, pp. 289–95.

    Article  CAS  Google Scholar 

  22. F. Hasan, J. Iqbal, and N. Ridley: Mater. Sci. Technol., 1985, vol. 1, pp. 312–15.

    CAS  Google Scholar 

  23. A. Cohen: Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2, pp. 386–87.

    Google Scholar 

  24. M.W. Mahoney: Rockwell Scientific Company, Thousand Oaks, CA, private communication, 2002.

  25. K.N. Krishnan: Mater. Sci. Eng. A, 2002, vol. A327, pp. 246–51.

    CAS  Google Scholar 

  26. T.U. Seidel and A.P. Reynolds: Metal. Mater. Trans. A, 2001, vol. 32A, pp. 2879–84.

    CAS  Google Scholar 

  27. P.R. Swann and H. Warlimont: Acta Metall., 1963, vol. 11, pp. 511–27.

    Article  Google Scholar 

  28. F.J. Humphreys: Acta Metall., 1977, vol. 25, pp. 1323–44.

    Article  CAS  Google Scholar 

  29. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul-Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. A238, pp. 219–74.

    CAS  Google Scholar 

  30. J.L. Robbins, O.C. Shepard, and O.D. Sherby: J. Iron Steel Inst., 1964, vol. 202, pp. 804–07.

    CAS  Google Scholar 

  31. O.D. Sherby, B. Walser, C.M. Young, and E.M. Cady: Scripta Metall., 1975, vol. 9, pp. 569–74.

    Article  CAS  Google Scholar 

  32. B. Walser and O.D. Sherby: Metall. Trans. A, 1979, vol. 10A, pp. 1461–71.

    CAS  Google Scholar 

  33. J. Sherburn: Naval Post Graduate School, Monterey, CA, private communication, 2003.

  34. H. Oikawa, T. Obara, and S. Karashima: Metall. Trans., 1970, vol. 1, pp. 2969–70.

    CAS  Google Scholar 

  35. J. Askill: Tracer Diffusion Data for Metals, Alloys and Simple Oxides, IFI Plenum, New York, NY, 1970, pp. 32–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh-Ishi, K., McNelley, T.R. The influence of friction stir processing parameters on microstructure of as-cast NiAl bronze. Metall Mater Trans A 36, 1575–1585 (2005). https://doi.org/10.1007/s11661-005-0249-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0249-2

Keywords

Navigation