Skip to main content
Log in

Grain-size dependence of the flow stress of Cu from millimeters to nanometers

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Data in the literature on the effect of grain size (d) from millimeters to nanometers on the flow stress of Cu are evaluated. Three grain-size regimes are identified: regime I, d>∼10−6 m; regime II, d ≈10−8 to 10−6 m; and regime III, d<∼10−8 m. Grain-size hardening occurs in regimes I and II; grain-size softening occurs in regime III. The deformation structure in regime I consists of dislocation cells; in regime II, the dislocations are mostly restricted to their slip planes; in regime III, computer simulations indicate that dislocations are absent and that deformation occurs by the shearing of grain-boundary atoms. The transition from regime I to II occurs when the dislocation cell size becomes larger than the grain size, and the transition from regime II to III occurs when the dislocation spacing due to elastic interactions becomes larger than the grain size. The rate-controlling mechanism in regime I is concluded to be the intersection of dislocations; in regime II, it is proposed to be grain-boundary shear promoted by the pileup of dislocations; in regime III, it appears to be grain-boundary shear by the applied stress alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Armstrong: Adv. Mater. Res., H. Herman, ed., Wiley, New York, NY, 1970, vol. 4, pp. 101–45.

    Google Scholar 

  2. H. Conrad and J. Narayan: Scripta Mater., 2000, vol. 42, pp. 1025–1030.

    Article  CAS  Google Scholar 

  3. H. Conrad and J. Narayan: Appl. Phys. Lett., 2002, vol. 81, pp. 2241–43.

    Article  CAS  Google Scholar 

  4. H. Conrad and J. Narayan: Acta Mater., 2002, vol. 50, pp. 5067–78.

    Article  CAS  Google Scholar 

  5. H. Conrad: Mater. Sci. Eng., 2003, vol. A341, pp. 216–28.

    CAS  Google Scholar 

  6. H. Conrad and J. Narayan: in Electron Microscopy: Its Role in Materials Science, The Mike Meshi Symp., J.R. Weertman, M. Fine, K. Faber, W. King, and P. Liaw, eds., TMS, Warrendale, PA, 2003, pp. 141–48.

    Google Scholar 

  7. E.O. Hall: Proc. Phys. Soc. London, 1951, vol. B64, pp. 747–53.

    CAS  Google Scholar 

  8. N.J. Petch: J. Iron Steel Inst., 1953, vol. 17, pp. 25–28.

    Google Scholar 

  9. N. Ono and S. Karashima: Scripta Metall., 1982, vol. 16, pp. 381–84.

    Article  CAS  Google Scholar 

  10. N. Hansen and B. Ralph: Acta Metall., 1982, vol. 30, pp. 411–17.

    Article  CAS  Google Scholar 

  11. P.G. Sanders, C.J. Youngdahl, and J.R. Weertman: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 77–82.

    Google Scholar 

  12. C. Henning, F. Boswell, and J. Corbett: Acta Metall., 1975, vol. 23, 1975, pp. 177–85.

    Article  CAS  Google Scholar 

  13. M. Merz and S. Dahlgren: J. Appl. Phys., 1975, vol. 46, pp. 3235–37.

    Article  CAS  Google Scholar 

  14. J.D. Embury and D.J. Lahaie: in Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructure, M. Natasi et al., eds., Kluwer Academic Publisher, The Netherlands, 1993, pp. 287–301.

    Google Scholar 

  15. H. Huang and F. Spaepen: Acta Mater., 2000, vol. 48, pp. 3261–69.

    Article  CAS  Google Scholar 

  16. G.W. Nieman, J.R. Weertman, and R.W. Siege: J. Mater. Res., 1991, vol. 6, p. 1012; MRS Symp. Proc., 1991, vol. 208, pp. 581–86.

    CAS  Google Scholar 

  17. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS, Warrendale, PA, 1996, p. 379; J.A. Weertman: in Nanostructured Materials, C. Koch, ed., Noyes Publications, Norwich, NY, 2002, pp. 397–420.

    Google Scholar 

  18. M. Hommel and O. Kraft: Acta Mater., 2001, vol. 49, pp. 3935–47.

    Article  CAS  Google Scholar 

  19. H. Conrad and Di Yang: J. Electronic Mater., 2002, vol. 31, pp. 304–12.

    CAS  Google Scholar 

  20. V. Gertsman, M. Hoffman, H. Gleiter, and R. Birringer: Acta Metall. Mater., 1994, vol. 42, pp. 3539–44.

    Article  CAS  Google Scholar 

  21. R.Z. Valiev, E. Kozlov, Y. Ivanov, J. Lion, A. Nazarov, and B. Baudelet: Acta Metall. Mater., 1994, vol. 42, pp. 2467–75.

    Article  CAS  Google Scholar 

  22. R.S. Iyer, C. Frey, S. Sastry, B. Waller, and W. Buhre: Mater. Sci. Eng., 1999, vol. A264, pp. 210–14.

    Google Scholar 

  23. S. Sastry, R. Iyer, V. Provenzano, and L. Kurihara: in Advanced Materials for the 21st Century: The Julia Weertman Symp., Y.-W. Chung, D. Dunand, P. Liaw, and G. Olson, eds., TMS, Warrendale, PA, 1999, pp. 537–45.

    Google Scholar 

  24. D. Jia, K. Ramesh, E. Ma, L. Lu, and K. Lu: Scripta Mater., 2001, vol. 45, pp. 613–20.

    Article  CAS  Google Scholar 

  25. L. Lu, S. Li, and K. Lu: Scripta Mater., 2001, vol. 45, pp. 1163–69.

    Article  CAS  Google Scholar 

  26. J.R. Weertman: in Nanostructured Materials, C. Koch, ed., Noyes Publications, Norwich, NY, 2002, pp. 397–421.

    Google Scholar 

  27. V. Weihnacht and W. Brücker: Acta Mater., 2001, vol. 49, pp. 2365–72.

    Article  CAS  Google Scholar 

  28. Y.M. Wang, K. Wang, D. Pan, K. Lu, K. Hemker, and E. Ma: Scripta Mater., 2003, vol. 48, pp. 1581–86.

    Article  CAS  Google Scholar 

  29. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scripta Metall., 1989, vol. 23, pp. 1679–84.

    Article  CAS  Google Scholar 

  30. J. Narayan: private communication, 2003, North Carolina State University, Raleigh, NC.

  31. J.E. Bailey: Phil. Mag., 1963, vol. 8, pp. 223–36.

    CAS  Google Scholar 

  32. M. Doner, H. Chang, and H. Conrad: J. Mech. Phys. Solids, 1974, vol. 22, pp. 555–73; Metall. Trans., 1974, vol. 5, pp. 1383–91.

    Article  CAS  Google Scholar 

  33. M.R. Staker and D.L. Holt: Acta Metall., 1972, vol. 20, pp. 569–79.

    Article  CAS  Google Scholar 

  34. H. van Swygenhoven, M. Spaczer, and A. Caro: Acta Mater., 1999, vol. 47, pp. 3117–26.

    Article  Google Scholar 

  35. S.V. Raj and G.M. Pharr: Mater. Sci. Eng., 1986, vol. 81, pp. 217–37.

    Article  CAS  Google Scholar 

  36. A.H. Cottrell: Dislocations and Plastic Flow in Crystals, Oxford University Press, Oxford, United Kingdom, 1953.

    Google Scholar 

  37. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, New York, NY, 1982.

    Google Scholar 

  38. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  39. U.F. Kocks: Metall. Trans., 1970, vol. 1, pp. 1121–43.

    Google Scholar 

  40. J.E. Flinn, D. Field, G. Korth, T. Lillo, and J. Macheret: Acta Mater., 2001, vol. 49, pp. 2065–74.

    Article  CAS  Google Scholar 

  41. M.J. Kobrinsky and C.V. Thompson: Acta Mater., 2000, vol. 48, pp. 625–33.

    Article  CAS  Google Scholar 

  42. H. Conrad: in Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience, New York, NY, 1961, pp. 299–300; H. Conrad: in Recovery and Recrystallization of Metals, L. Himmal, ed., Gordon and Breach Interscience, New York, NY, 1963, pp. 124–30; R. Jones, and H. Conrad: Trans. TMS-AIME, 1969, vol. 245, pp. 779–89; H. Conrad: in Ultrafine-Grain Metals, J. Burke, N.L. Reed, and V. Weiss, eds., Syracuse University Press, Syracuse, NY, 1970, pp. 213–29; H. Conrad, S. Feuerstein, and L. Rice: Mater. Sci. Eng., 1967, vol. 2, pp. 157–68.

    Google Scholar 

  43. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  44. W. Eddington: Phil. Mag., 1969, vol. 19, pp. 1189–206.

    Google Scholar 

  45. Von E. Göttler: Phil. Mag., 1973, vol. 28, pp. 1057–76.

    Google Scholar 

  46. A. Thompson, M. Baskes, and W. Flanagan: Acta Mater., 1973, vol. 21, pp. 1017–28.

    Article  CAS  Google Scholar 

  47. A. Thompson and M. Baskes: Phil. Mag., 1973, vol. 28, pp. 301–08.

    CAS  Google Scholar 

  48. A. Seeger: in Dislocations and Mechanical Properties of Crystals, J. Fisher, et al., eds., John Wiley & Sons, New York, NY, 1957, pp. 243–29.

    Google Scholar 

  49. A. Seeger, S. Mader, and H. Kronmuller: in Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience, New York, NY, 1963, pp. 655–710.

    Google Scholar 

  50. Z.B. Basinski: Phil. Mag., 1959, vol. 4, pp. 393–432.

    CAS  Google Scholar 

  51. P.R. Thornton, T.E. Mitchell, and P.B. Hirsch: Phil. Mag., 1962, vol. 7, pp. 337–58.

    CAS  Google Scholar 

  52. H. Conrad: in High Strength Materials, V.F. Zackay, ed., John Wiley, New York, NY, 1965, 436–505.

    Google Scholar 

  53. H. Conrad and Wei-di Cao: The Johannes Weertman Symp., R.J. Arsenault et al., eds., TMS, Warrendale, PA, 1996, pp. 321–27.

    Google Scholar 

  54. Wei-di Cao and H. Conrad: in Micromechanics of Advanced Materials, TMS, Warrendale, PA, 1995, pp. 225–36.

    Google Scholar 

  55. W. Carrington, K.F. Hale, and D. McLean: Proc. R. Soc. A, 1960, vol. 259, pp. 203–27.

    Google Scholar 

  56. G. Saada: Acta Metall., 1960, vol. 8, pp. 841–47.

    Article  CAS  Google Scholar 

  57. J.D. Baird and B. Gale: Phil. Trans. R. Soc., 1965, vol. 257A, pp. 553–92.

    Google Scholar 

  58. H. Conrad, B. de Meester, C. Yin, and M. Doner: in Rate Processes in Plastic Deformation of Materials, ASM, Metals Park, OH, 1975, pp. 175–226.

    Google Scholar 

  59. P. Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, pp. 79–84.

    Google Scholar 

  60. J. Herváth, R. Berringer, H. Gleiter, U. Kanert, B. Michel, and B. Günther: Solid State Comm., 1987, vol. 62, pp. 319–22.

    Article  Google Scholar 

  61. W. Dickenscheid, R. Birringer, and H. Gleiter: Solid State Comm., 1991, vol. 79, pp. 683–86.

    Article  CAS  Google Scholar 

  62. R.L. Coble: J. Appl. Phys., 1963, vol. 34, pp. 1679–82.

    Article  Google Scholar 

  63. B. Cai, Q. Kong, L. Lu, and K. Lu: Scripta Mater., 1999, vol. 41, pp. 755–59.

    Article  CAS  Google Scholar 

  64. H. Hahn and K.A. Dadmanabhan: Phil. Mag., 1997, vol. B76, pp. 559–71.

    Google Scholar 

  65. P.J. Hsieh, Y. Hung, and J. Huang: Scripta Mater., 2003, vol. 49, pp. 173–78.

    Article  CAS  Google Scholar 

  66. H. Conrad: North Carolina State University, Raleigh, NC, unpublished analysis, 2003.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation given in the symposium “Dynamic Deformation: Constitutive Modeling, Grain Size, and Other Effects: In Honor of Prof. Ronald W. Armstrong,” March 2–6, 2003, at the 2003 TMS/ASM Annual Meeting, San Diego, California, under the auspices of the TMS/ASM Joint Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, H. Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall Mater Trans A 35, 2681–2695 (2004). https://doi.org/10.1007/s11661-004-0214-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0214-5

Keywords

Navigation