Skip to main content
Log in

Achieving enhanced ductility in a dilute magnesium alloy through severe plastic deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experiments were conducted to evaluate the utility of a new processing procedure developed for Mg-based alloys in which samples are subjected to a two-step processing route of extrusion followed by equal-channel angular pressing (designated as EX-ECAP). The experiments were conducted using a Mg-0.6 wt pct Zr alloy and, for comparison purposes, samples of pure Mg. It is shown that the potential for successfully using ECAP increases in both materials when adopting the EX-ECAP procedure. For the Mg-Zr alloy, the use of EX-ECAP produces a grain size of ∼1.4 µm when the pressing is undertaken at 573 K. By contrast, using EX-ECAP with pure Mg at 573 K produces a grain size of ∼26 µm. Tensile testing of the Mg-Zr alloy at 523 and 573 K after processing by EX-ECAP revealed the occurrence of significantly enhanced ductilities with maximum elongations of ∼300 to 400 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H. Froes, D. Eliezer, and E. Aghion: JOM, 1998, vol. 50 (9), pp. 30–34.

    CAS  Google Scholar 

  2. K. Johnson: Adv. Mater. Proc., 2002, vol. 160 (6), pp. 62–65.

    Google Scholar 

  3. H. Friedrich and S. Schumann: J. Mater. Proc. Technol., 2001, vol. 117, pp. 276–81.

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  5. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov: Russ. Metall., 1981, vol. 1, pp. 99–105.

    Google Scholar 

  6. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  7. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: J. Mater. Sci., 2001, vol. 36, pp. 2835–43.

    Article  CAS  Google Scholar 

  8. N.A. Smirnova, V.I. Levit, V.I. Pilyugin, L.S. Davydova, and V.A. Sazonova: Fiz. Metall. Metalloved., 1986, vol. 61, pp. 1170–77.

    CAS  Google Scholar 

  9. A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, and T.G. Langdon: Scripta Mater., 2001, vol. 44, pp. 2753–58.

    Article  CAS  Google Scholar 

  10. A.P. Zhilyaev, G.V. Nurislamova, B.-K. Kim, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Acta Mater., 2003, vol. 51, pp. 753–65.

    Article  CAS  Google Scholar 

  11. Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 4733–41.

    Article  CAS  Google Scholar 

  12. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.

    Article  CAS  Google Scholar 

  13. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 2973–82.

    Article  CAS  Google Scholar 

  14. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., 1996, vol. 11, pp. 1880–90.

    CAS  Google Scholar 

  15. P.B. Berbon, N.K. Tsenev, R.Z. Valiev, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2237–43.

    Article  CAS  Google Scholar 

  16. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2503–10.

    Article  CAS  Google Scholar 

  17. Z. Horita, T. Fujinami, and T.G. Langdon: Mater. Sci. Eng., 2001, vol. A318, pp. 34–41.

    CAS  Google Scholar 

  18. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 2000, vol. A281, pp. 82–87.

    CAS  Google Scholar 

  19. Y. Nishida, H. Arime, J.-C. Kim, and T. Ando: Scripta Mater., 2001, vol. 45, pp. 261–66.

    Article  CAS  Google Scholar 

  20. A. Azushima and K. Aoki: Mater. Sci. Eng., 2002, vol. A337, pp. 45–49.

    CAS  Google Scholar 

  21. Y. Saito, H. Utsunomiya, H. Suzuki, and T. Sakai: Scripta Mater., 2000, vol. 42, pp. 1139–44.

    Article  CAS  Google Scholar 

  22. J.-C. Lee, H.-K. Seok, J.-H. Han, and Y.-H. Chung: Mater. Res. Bull., 2001, vol. 36, pp. 997–1004.

    Article  CAS  Google Scholar 

  23. J.-H. Han, H.-K. Seok, Y.-H. Chung, M.-C. Shin, and J.-C. Lee: Mater. Sci. Eng., 2002, vol. A323, pp. 342–47.

    CAS  Google Scholar 

  24. J.-C. Lee, H.-K. Seok, J.-Y. Suh, J.-H. Han, and Y.-H. Chung: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 665–73.

    Article  Google Scholar 

  25. J.-C. Lee, H.-K. Seok, and J.-Y. Suh: Acta Mater., 2002, vol. 50, pp. 4005–19.

    Article  CAS  Google Scholar 

  26. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi: Scripta Mater., 1997, vol. 36, pp. 681–86.

    Article  CAS  Google Scholar 

  27. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi: Acta Mater., 1999, vol. 47, pp. 2047–57.

    Article  CAS  Google Scholar 

  28. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Scripta Mater., 2001, vol. 45, pp. 89–94.

    Article  CAS  Google Scholar 

  29. H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi: Scripta Mater., 2002, vol. 46, pp. 851–56.

    Article  CAS  Google Scholar 

  30. W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong: Scripta Mater., 2002, vol. 47, pp. 39–44.

    Article  CAS  Google Scholar 

  31. A. Yamashita, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2001, vol. A300, pp. 142–47.

    CAS  Google Scholar 

  32. Z. Horita, K. Matsubara, K. Makii, and T.G. Langdon: Scripta Mater., 2002, vol. 47, pp. 255–60.

    Article  CAS  Google Scholar 

  33. K. Matusbara, Y. Miyahara, Z. Horita, and T.G. Langdon: Acta Mater., 2003, vol. 51, pp. 3073–84.

    Article  CAS  Google Scholar 

  34. J.A. Chapman and D.V. Wilson: J. Inst. Met., 1962–63, vol. 91, pp. 39–40.

    Google Scholar 

  35. K.U. Kainer: Proc. 3rd Int. Magnesium Conf., G.W. Lorimer, ed., The Institute of Materials, London, 1997, pp. 533–43.

    Google Scholar 

  36. D.V. Wilson: J. Inst. Met., 1970, vol. 98, pp. 133–43.

    Google Scholar 

  37. M. Hilpert, A. Styczynski, J. Kiese, and L. Wagner: in Magnesium Alloys and Their Applications, B.L. Mordike and K.U. Kainer, eds., Wiley-VCH, Weinheim, Germany, 1998, pp. 319–24.

    Google Scholar 

  38. G.F. Weissmann and W. Babington: Proc. ASTM, 1958, vol. 58, pp. 869–86.

    Google Scholar 

  39. A.A. Nayeb-Hashemi and J.R. Clark: Binary Alloy Phase Diagrams, T. Massalski, ed., ASM, Metals Park, OH, 1986, pp. 1566–67.

    Google Scholar 

  40. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.

    Article  CAS  Google Scholar 

  41. C. Xu and T.G. Langdon: Scripta Mater., 2003, vol. 48, pp. 1–4.

    Article  CAS  Google Scholar 

  42. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328–32.

    CAS  Google Scholar 

  43. M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2002, vol. A332, pp. 97–109.

    CAS  Google Scholar 

  44. T.G. Langdon: Metall. Trans. A, 1982, vol. 13A, pp. 689–701.

    Google Scholar 

  45. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N.K. Tsenev, R.Z. Valiev, Y. Ma, and T.G. Langdon: J. Mater. Res., 1993, vol. 8, pp. 2810–18.

    CAS  Google Scholar 

  46. Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., 1998, vol. 13, pp. 446–50.

    CAS  Google Scholar 

  47. K. Oh-ishi, Z. Horita, D.J. Smith, and T.G. Langdon: J. Mater. Res., 2001, vol. 16, pp. 583–89.

    Article  CAS  Google Scholar 

  48. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 707–16.

    Article  CAS  Google Scholar 

  49. S. Lee, M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2003, vol. A342, pp. 294–301.

    CAS  Google Scholar 

  50. X. Wu and Y. Liu: Scripta Mater., 2002, vol. 46, pp. 269–74.

    Article  CAS  Google Scholar 

  51. J.C. Tan and M.J. Tan: Scripta Mater., 2002, vol. 47, pp. 101–06.

    Article  CAS  Google Scholar 

  52. W.-J. Kim, S.W. Chung, C.S. Chung, and D. Kum: Acta Mater., 2001, vol. 49, pp. 3337–45.

    Article  CAS  Google Scholar 

  53. A. Wisbey and M.W. Kearns: in Superplasticity: 60 Years after Pearson, N. Ridley, ed., The Institute of Materials, London, 1995, pp. 305–23.

    Google Scholar 

  54. C.F. Dressel: in Superplasticity: 60 Years after Pearson, N. Ridley, ed., The Institute of Materials, London, 1995, pp. 359–76.

    Google Scholar 

  55. T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2437–43.

    Article  CAS  Google Scholar 

  56. S.S. Vagarali and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 1157–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsubara, K., Miyahara, Y., Horita, Z. et al. Achieving enhanced ductility in a dilute magnesium alloy through severe plastic deformation. Metall Mater Trans A 35, 1735–1744 (2004). https://doi.org/10.1007/s11661-004-0082-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0082-z

Keywords

Navigation