Skip to main content
Log in

Microstructure, Texture, and Superplasticity of a Fine-Grained Mg-Gd-Zr Alloy Processed by Equal-Channel Angular Pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

There are limited reports to date on the microstructure and superplasticity of the Mg-Gd alloys after processing by equal-channel angular pressing (ECAP). Accordingly, the effects of ECAP temperature from 473 K to 723 K (200 °C to 450 °C) and number of passes (2, 4, and 8) on the microstructure and texture of an extruded Mg-5Gd-0.4Zr (GW50) alloy were investigated by scanning electron microscope, transmission electron microscope, and electron backscattered diffraction. The results show that the optimum ECAP temperature is 623 K (350 °C). Higher temperatures give extensive grain growth and the material has insufficient formability at lower temperatures. The results show also that the alloy exhibits no further grain refinement after four ECAP passes and there is slight grain growth at 8 ECAP passes. Samples were processed by four passes at 623 K (350 °C) and then subjected to shear punch testing. The results confirm the occurrence of superplastic behavior at 723 K (450 °C) with a maximum strain rate sensitivity index of ~0.47 and an activation energy of ~110 kJ mol−1. The results are consistent with the occurrence of flow by grain boundary sliding in the superplastic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. MAGREX 36 is a trade mark of Foseco, Staffordshire, United Kingdom.

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng., 2001, vol. 302A, pp. 37–45.

    Article  Google Scholar 

  2. M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2016, vol. 51, pp. 19–33.

    Article  Google Scholar 

  3. J. Cizek, I. Prochazka, B. Smola, I. Stulikova, R. Kuzel, Z. Matej, V. Cherkaska, R.K. Islamgaliev and O. Kulyasova: Mater. Sci. Eng., 2007, vol. 462A, pp. 121–26.

    Article  Google Scholar 

  4. R. Alizadeh, R. Mahmudi, A. H. W. Ngan and T. G. Langdon: J. Mater. Sci., 2015, 50, pp. 4940–51.

    Article  Google Scholar 

  5. X. Zhang, L. Li, Y. Deng, and N. Zhou: J. Alloys Compd., 2009, vol. 481, pp. 296–300.

    Article  Google Scholar 

  6. L. Li, X. Zhang, Y. Deng and C. Tang: J. Alloys Compd., 2009, vol. 485, pp. 295–99.

    Article  Google Scholar 

  7. D.J. Li, Q.D. Wang, J.J. Blandin, M. Suery, J. Dong and X.Q. Zeng: Mater. Sci. Eng., 2009, vol. 526A, pp. 150–55.

    Article  Google Scholar 

  8. L. Li, X. Zhang, C. Tang, Y. Deng and N. Zhou: Mater. Sci. Eng., 2010, vol. 527A, pp. 1266–74.

    Article  Google Scholar 

  9. Q. Yang, B.L. Xiao and Z.Y. Ma: J. Alloys Compd., 2013, vol. 551, pp. 61–66.

    Article  Google Scholar 

  10. Q. Yang, B.L. Xiao, Q. Zhang, M.Y. Zheng and Z.Y. Ma: Scr. Mater., 2013, vol. 69, pp. 801–04.

    Article  Google Scholar 

  11. R. Alizadeh, R. Mahmudi and T.G. Langdon: J. Mater. Res. Technol., 2014, 3, pp. 228–32.

    Article  Google Scholar 

  12. A. Movahedi-Rad, R. Mahmudi, G.H. Wu and H.R. Jafari-Nodooshan: J. Alloys Compd., 2015, vol. 626, pp. 309–13.

    Article  Google Scholar 

  13. M. Sarebanzadeh, R. Roumina, R. Mahmudi, G.H. Wu and H.R. Jafari-Nodooshan: Mater. Sci. Eng., 2015, vol. 646A, pp. 249–53.

    Article  Google Scholar 

  14. R. Alizadeh, R. Mahmudi, A.H.W. Ngan, Y. Huang and T.G. Langdon: Mater. Sci. Eng., 2016, vol. 651A, pp. 786–94.

    Article  Google Scholar 

  15. T.G. Langdon: J. Mater. Sci., 2009, vol. 44, pp. 5998–6010.

    Article  Google Scholar 

  16. F. Zhang, K. Zhang, C. Tan, X. Yu, H. Ma, F. Wang and H. Cai: Trans. Nonferrous Met. China, 2011, vol. 21, pp. 2140–46.

    Article  Google Scholar 

  17. J. Zhang, Z. Kang and L. Zhou: Mater. Sci. Eng., 2015, vol. 647A, pp. 184–90.

    Article  Google Scholar 

  18. R. Mahmudi, R. Alizadeh and A.R. Geranmayeh: Scr. Mater., 2011, vol. 64, pp. 521–24.

    Article  Google Scholar 

  19. R. Mahmudi, H. Mahjoubi and P. Mehraram: Int. J. Mod. Phys. B, 2008, 22, pp. 2823–32.

    Article  Google Scholar 

  20. R. Mahmudi, R. Alizadeh and S. Azhari: Mater. Lett., 2013, vol. 97, pp. 44–46.

    Article  Google Scholar 

  21. M. Karami and R. Mahmudi: Mater. Sci. Eng., 2013, vol. 576A, pp. 156–59.

    Article  Google Scholar 

  22. N. Fakhar, F. Fereshteh-Saniee and R. Mahmudi: Mater. Des., 2015, vol. 85, pp. 342–48.

    Google Scholar 

  23. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Mater. Sci. Eng., 1998, vol. 257A, pp. 328–32.

    Article  Google Scholar 

  24. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon: Scr. Mater., 1996, vol. 35, pp. 143–46.

    Article  Google Scholar 

  25. R. Alizadeh and R. Mahmudi: Mater. Sci. Eng., 2010, vol. 527A, pp. 3975–83.

    Article  Google Scholar 

  26. G.L. Hankin, M.B. Toloczko, K.I. Johnson, M.A. Khaleel, M.L. Hamilton, F.A. Garner, R.W. Davies and R.G. Faulkner: ASTM STP 1366, 2000, pp. 1018–28.

    Google Scholar 

  27. W.J. Park, H. Park, D.H. Kim and N.J. Kim: Mater. Sci. Eng., 1994, 179, pp. 637–40.

    Article  Google Scholar 

  28. P. Vostry, B. Smola, I. Stulikova, F. Von Buch and B.L. Mordike: Phys. Status Solidi, 1999, 175A, pp. 491–500.

    Article  Google Scholar 

  29. D. Li, Q. Wang and W. Ding: Mater. Sci. Eng., 2006, 428A, pp. 295–300.

    Article  Google Scholar 

  30. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie and W.J. Ding: J. Alloy Compd., 2007, vol. 427, pp. 316–23.

    Article  Google Scholar 

  31. Z. Yang, Z.H. Wang, H.B. Duan, Y.C. Guo, P.H. Gao and J.P. Li: Mater. Sci. Eng., 2015, vol. 631A, pp. 160–65.

    Article  Google Scholar 

  32. K.Y. Zheng, J. Dong, X.Q. Zeng and W.J. Ding: Mater. Sci. Technol., 2008, vol. 24, pp. 320–26.

    Article  Google Scholar 

  33. Y. Yang, L. Peng, P. Fu, B. Hu and W. Ding: J. Alloys Compd., 2009, vol. 485, pp. 245–48.

    Article  Google Scholar 

  34. Q. Peng, Y. Huang, J. Meng, Y. Li and K.U. Kainer: Intermetallics, 2011, vol. 19, pp. 382–89.

    Article  Google Scholar 

  35. S.M. Zhu, J.F. Nie, M.A. Gibson and M.A. Easton: Scri. Mater., 2014, vol. 77, 21–24.

    Article  Google Scholar 

  36. ASM Handbook, Alloy Phase Diagrams, vol. 3, ASM International, Materials Park, 1992.

    Google Scholar 

  37. R.B. Figueiredo and T.G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7366–71.

    Article  Google Scholar 

  38. Y. Radi and R. Mahmudi: Mater. Sci. Eng., 2010, vol. 527A, pp. 2764–71.

    Article  Google Scholar 

  39. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang and X.Y. Lu, Mater. Sci. Eng., 2012, vol. 547A, pp. 93–98.

    Article  Google Scholar 

  40. S.K. Das, Y.B. Kang, T. Ha and I.H. Jung: Acta Mater., 2014, vol. 71, pp. 164–75.

    Article  Google Scholar 

  41. R. Alizadeh, R. Mahmudi, A.H.W. Ngan and T.G. Langdon: Adv. Eng. Mater., 2016, vol. 18, pp. 1044–49.

    Article  Google Scholar 

  42. S.S. Vagarali and T.G. Langdon: Acta Met., 1981, vol. 29, pp. 1969–82.

    Article  Google Scholar 

  43. N. Stanford: Mater. Sci. Eng., 2013, vol. 565A, pp. 469–75.

    Article  Google Scholar 

  44. T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi: Scr. Mater., 2001, vol. 45, pp. 89–94.

    Article  Google Scholar 

  45. S.M. Masoudpanah and R. Mahmudi: Mater. Sci. Eng., 2010, vol. 527A, pp. 3685–89.

    Article  Google Scholar 

  46. J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig and S.R. Agnew: Metall. Mater. Trans. A, 2012, vol. 43, pp. 1363–75.

    Article  Google Scholar 

  47. R.E. Smallman and A.H.W. Ngan: Modern Physical Metallurgy, Elsevier, New York 2014, p. 437.

    Google Scholar 

  48. T.G. Langdon: Mater. Sci. Eng., 1994, vol. 174A, pp. 225–30.

    Article  Google Scholar 

  49. T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2437–43.

    Article  Google Scholar 

  50. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, U.K., 1982.

    Google Scholar 

Download references

Acknowledgment

The authors thank the Iran National Science Foundation (INSF) for support of this work under Grant No. 94013486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Additional information

Manuscript submitted April 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, R., Mahmudi, R., Ngan, A.H.W. et al. Microstructure, Texture, and Superplasticity of a Fine-Grained Mg-Gd-Zr Alloy Processed by Equal-Channel Angular Pressing. Metall Mater Trans A 47, 6056–6069 (2016). https://doi.org/10.1007/s11661-016-3765-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3765-3

Keywords

Navigation