Skip to main content
Log in

Solidification of chill-cast Al-Zn-Mg alloys to be used as sacrificial anodes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present research, Al-Zn-Mg alloys were vacuum induction melted and gravity cast into steel molds. Ingots were microstructurally and electrochemically characterized to evaluate their performance as Al-sacrificial anodes for cathodic protection of structures exposed to marine environments. The microstructure observed in as-cast ingots consisted mainly of α-Al dendrites with 0.68 to 2.25 vol pct of τ phase in α-Al matrix and eutectic in interdendritic regions. After heat treatment, the presence of the τ phase increased up to 5 vol pct. Electrochemical efficiencies obtained in Al alloys showed maximum values of 73 and 87 pct in as-cast ingots and heat-treated ingots, respectively. In order to contribute to the development of Al-Zn-Mg anodes, the Al-5.3 at. pct Zn-6.2 at. pct Mg (Al-12 wt pct Zn-5.4 wt pct Mg) alloy was monitored to identify the temperature changes as it cools through phase transformation intervals. Growth temperatures of the phases present in this alloy were employed to predict the structure growing at fixed growth velocity. Predictions of variation of solute concentration with growth velocity in α-Al dendrites were included, too. The results of these analyses help to select alloy composition and to control microstructure in order to develop a new generation of Al-sacrificial anodes free of In and Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

total current charge (amp-h)

C 1, C 2 :

constants for a given system (Ks1/2 m−1/2)

C eq max :

the maximum concentration of solute at equilibrium

C* L :

liquidus tip concentration (wt pct or at. pct)

C 0 :

concentration (wt pct or at. pct)

C* s :

solidus tip concentration (wt pct or at. pct)

D :

diffusion coefficient in the liquid (m2s−1)

G :

temperature gradient (Km)

Iv(P):

is the Ivantsov function

k :

partition coefficient

k 1 :

constant

K 1 :

a constant (= π/P2 D 2)

K 2 :

a constant (= mC o c/D[1 − pIv(P)])

m :

liquidus slope (°C/wt pct or °C/at. pct)

n :

a constant that depends on growth morphology and regime

p :

complementary partition coefficient.

P:

solute Peclet number

T G :

growth temperature of dendrites, intermetallic or eutectics (°C or K)

T :

equilibrium liquidus, intermetallic or eutectic temperature (°C or K)

V :

solidification front velocity (ms−1)

W :

specimen weight loss (kg)

ξ c :

a constant (= 1 − 2k/{[1 + (2π/P)2]1/2})

Γ :

Gibbs-Thompson coefficient (Km)

Δf p :

fraction of precipitates that form during aging

C m :

mean solute concentration in the matrix (wt pct or at. pct)

C m 0 :

matrix solute content in stabilized base material (wt pct or at. pct)

References

  1. G. Bruzzone, A. Barbucci, and G. Cerisola: J. Alloys Compounds, 1997, vol. 247, pp. 210–16.

    Article  CAS  Google Scholar 

  2. S. Valdes, J. Genesca, B. Mena, and J.A. Juarez-Islas: J. Mater. Eng. Performance, 2000, vol. 10 (5), pp. 596–601.

    Article  Google Scholar 

  3. K. Ravidran and A.G. Gopalakrishna: Fishery Technol., 1987, vol. 24, pp. 1–4.

    Google Scholar 

  4. D.R. Salinas, S.G. Garcia, and J.B. Bessone: J. Appl. Electrochem., 1999, vol. 29 (9), pp. 1063–71.

    Article  CAS  Google Scholar 

  5. D.R. Salinas and J.B. Bessone: Corrosion, 1991, vol. 47 (9), pp. 665–74.

    CAS  Google Scholar 

  6. I. Gurrappa: Corr. Prevention Control, 1997, June, pp. 69–80.

  7. A. Barbucci, G. Cerisola, G. Bruzzone, and A. Saccone: Electrochemica Acta, 1997, vol. 42 (15), pp. 2369–80.

    Article  CAS  Google Scholar 

  8. H. Liang, S.-L. Chen, and Y.A. Chang: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1725–34.

    Article  CAS  Google Scholar 

  9. G. Eger: Int. Z. Metallogr., 1993, vol. 4, pp. 50–128.

    Google Scholar 

  10. D.A. Petrov: in Ternary Alloys, G. Petzow and G. Effenberg, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, vol. 7, pp. 57–71.

    Google Scholar 

  11. C. Labrecque and M. Gagné: AFS Trans., 1998, vol. 106, pp. 83–90.

    CAS  Google Scholar 

  12. J.A. Juarez-Islas and H. Jones: Inst. Met., 1988, vol. 421, pp. 492–95.

    Google Scholar 

  13. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34 (5), pp. 823–30.

    Article  CAS  Google Scholar 

  14. G.M. Kuznetsov, A.D. Barsukov, G.B. Krivosheeva, and E.G. Dieva: Izv. Akad. Nauk, SSSR Metall., 1986, vol. 4, pp. 198–200.

    Google Scholar 

  15. P.E. Droeneb and N. Ryum: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 521–30.

    Google Scholar 

  16. J.A. Juarez-Islas: J. Mater. Sci., 1994, vol. 26, pp. 5004–09.

    Article  Google Scholar 

  17. K.A. Jackson and D. Hunt: TMS-AIME, (1966), vol. 236, p. 1129.

    CAS  Google Scholar 

  18. W. Kurz and D.J. Fisher: Int. Mater. Rev., 1979, vol. 24, p. 177.

    CAS  Google Scholar 

  19. A. Moore and R. Elliot: The Solidification of Metals, The Iron and Steel Institute, London, 1968, p. 167.

    Google Scholar 

  20. M. Tasa and J.D. Hunt: J. Cryst. Growth, 1976, vol. 34, p. 38.

    Article  Google Scholar 

  21. B.J. Bjorneklett, O. Grong, O.R. Myhr, and A.O. Klñuken: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2667–77.

    Article  CAS  Google Scholar 

  22. A.M. Samuel, P. Ouellet, F.H. Samuel, and H.W. Doty: AFS Trans., 1977, vol. 156, pp. 951–62.

    Google Scholar 

  23. A. Juarez-Hernandez and H. Jones: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 327–28.

    Article  CAS  Google Scholar 

  24. H.D. Brody and M.C. Flemings: Metall. Trans. A, 1981, vol. 12A, p. 965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, C., Genesca, J., Alvarez, O. et al. Solidification of chill-cast Al-Zn-Mg alloys to be used as sacrificial anodes. Metall Mater Trans A 34, 2991–2997 (2003). https://doi.org/10.1007/s11661-003-0198-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0198-6

Keywords

Navigation