Skip to main content
Log in

Fatigue Behaviour of Additive Manufactured Ti-TiB

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Fatigue behaviour of titanium reinforced with TiB particles fabricated by ‘plasma transferred arc solid freeform fabrication’ (PTA-SFFF) technique was investigated. Rotation bending fatigue tests were conducted following the MPIF 56 standard using the staircase method approach. Experimental data is used to calculate the fatigue strength and construct S-N curves, where the results were compared to a powder metallurgy FC0205 as a benchmark material. The titanium samples were found to exhibit superior fatigue behaviour in comparison to the reference FC0205 material, performing well above 1/3 of its ultimate tensile strength with a 90% survival fatigue strength of 244 +/- 98.3 MPa versus 141 +/- 17.4 MPa. Fatigue failure mechanisms of samples were identified by examination of the fracture surfaces through scanning electron microscopy (SEM) as well as using transmission-electron microscopy (TEM) and focused ion beam (FIB) analysis techniques. Fatigue crack propagation was either arrested or deflected when propagation occurred within the vicinity of the TiB intermetallics. Fracture surfaces of the titanium matrix displayed evidence of striations while the TiB intermetallic experience cleavage fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J.J. Donachie, in Titan. - A Tech. Guid., 2nd ed. (ASM International, Materials Park, 2000), pp. 1–3.

    Google Scholar 

  2. G. Lütjering and J.C. Williams, Titanium : Engineering Materials and Processes, 2nd ed. (Springer, New York, 2007).

    Google Scholar 

  3. S.A. Niknam, R. Khettabi, and V. Songmene, in Mach. Titan. Alloy., edited by J.P. Davim (Springer-Verlag Berlin Heidelberg, New York, 2014), pp. 1–10.

    Google Scholar 

  4. P. Kumar and K.S.R. Chandran, Metall. Mater. Trans. A 48, 2301 (2017).

    Article  CAS  Google Scholar 

  5. S. Jinks, J. Scanlan, and S. Wiseall, in Collab. Prod. Serv. Life Cycle Manag. a Sustain. World, edited by R. Curran, S.Y. Chou, and A. Trappey (Springer-Verlag London Limited, London, 2008), pp. 225–232.

    Google Scholar 

  6. D. Marini, D. Cunningham, and J.R. Corney, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2017).

  7. L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo, Mater. Sci. Eng. A 687, 47 (2017).

    Article  CAS  Google Scholar 

  8. Y. Cao, F. Zeng, B. Liu, Y. Liu, J. Lu, Z. Gan, and H. Tang, Mater. Sci. Eng. A 654, 418 (2016).

    Article  CAS  Google Scholar 

  9. R.M. German, Powder Metallurgy and Particulate Materals Processing: The Processes, Materials, Products, Properties and Applications (Metal Powder Industries Federation, Princeton, New Jersey, 2005).

    Google Scholar 

  10. Standard Test Methods for Metal Powders and Powder Metallurgy Products (Metal Powder Industries Federation, Princeton, 2002).

  11. G.N. Grayson, G.B. Schaffer, and J.R. Griffiths, Mater. Sci. Eng. A 434, 1 (2006).

    Article  Google Scholar 

  12. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C. Badini, Intermetallics 19, 776 (2011).

    Article  CAS  Google Scholar 

  13. P. Edwards, A. O’Conner, and M. Ramulu, J. Manuf. Sci. Eng. 135, (2013).

  14. P. Edwards and M. Ramulu, Mater. Sci. Eng. A 598, 327 (2014).

    Article  CAS  Google Scholar 

  15. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).

    Article  CAS  Google Scholar 

  16. D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Int. J. Fatigue 94, 211 (2017).

    Article  CAS  Google Scholar 

  17. C. Cai, B. Song, C. Qiu, L. Li, P. Xue, Q. Wei, J. Zhou, H. Nan, H. Chen, and Y. Shi, J. Alloys Compd. 710, 364 (2017).

    Article  CAS  Google Scholar 

  18. A.P.I. Popoola, L. Phume, S. Pityana, and V.S. Aigbodion, Surf. Coatings Technol. 285, 161 (2016).

    Article  CAS  Google Scholar 

  19. S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, and J. Umeda, Mater. Sci. Eng. A 628, 75 (2015).

    Article  CAS  Google Scholar 

  20. K.S. Ravi Chandran, K.B. Panda, and S.S. Sahay, Jom 56, 42 (2004).

    Article  Google Scholar 

  21. B.J. Kooi, Y.T. Pei, and J.T.M. De Hosson, Acta Mater. 51, 831 (2003).

    Article  CAS  Google Scholar 

  22. F. Weng, H. Yu, C. Chen, J. Liu, L. Zhao, J. Dai, and Z. Zhao, J. Alloys Compd. 692, 989 (2017).

    Article  CAS  Google Scholar 

  23. S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin, F. Brisset, C. Colin, and P. Gadaud, Mater. Sci. Eng. A 677, 171 (2016).

    Article  CAS  Google Scholar 

  24. R. Banerjee, P.C. Collins, and H.L. Fraser, Adv. Eng. Mater. 4, 847 (2002).

    Article  CAS  Google Scholar 

  25. S. Nag and R. Banerjee, in ASM Handb. (ASM International, Materials Park, 2012), pp. 6–17.

    Google Scholar 

  26. ASTM B962-15 Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle (ASTM International, West Conshohocken, 2015).

  27. Standard Test Method 56: Method for Determination of Rotating Beam Fatigue Endurance Limit of Powder Metallurgy (PM) Materials (Metal Powder Industries Federation, Princeton, 2016).

  28. ASTM E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, 2016).

  29. ASM Handbook Volume 3, Alloy Phase Diagrams - B (Boron) Binary Alloy Phase Diagrams (ASM International, Materials Park, 2016).

  30. ASM Handbook Volume 2, Properties and Selection: Nonferrous Alloys and Special Purpose Materials (ASM International, Materials Park, 1995).

  31. B.F. Decker and J.S. Kasper, Acta Crystallogr. 7, 77 (1954).

    Article  CAS  Google Scholar 

  32. H. Rutz, T. Murphy, and T. Cimino, in PM-EC ’96 World Congr. (PM International, Washington, 1996), pp. 1–20.

    Google Scholar 

  33. K. Farokhzadeh and A. Edrisy, Mater. Sci. Eng. A 620, 435 (2014).

    Article  CAS  Google Scholar 

  34. M. Lewandowska and K.J. Kurzydlowski, J. Mater. Sci. 43, 7299 (2008).

    Article  CAS  Google Scholar 

  35. Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).

    Article  CAS  Google Scholar 

  36. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, F.G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsujii, A. Rosochowskij, and A. Yanagidaa, CIRP Ann. 57, 716 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudreau, D.B., DiCecco, LA., Gali, O.A. et al. Fatigue Behaviour of Additive Manufactured Ti-TiB. MRS Advances 3, 3641–3653 (2018). https://doi.org/10.1557/adv.2018.618

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.618

Navigation