Skip to main content
Log in

Nanostructure in an Al-Mg-Sc alloy processed by low-energy ball milling at cryogenic temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Spray-atomized Al-7.5Mg-0.3Sc (in wt pct) alloy powders were mechanically milled at a low-energy level and at cryogenic temperature (cryomilling). The low-energy milling effectively generated a nanoscale microstructure of a supersaturated face-centered cubic (fcc) solid solution with an average grain size of ∼26 nm. The nanoscale microstructure was fully characterized and the associated formation mechanisms were investigated. Two distinct nanostructures were identified by transmission electron microscopy (TEM) observations. Most frequently, the structure was comprised of randomly oriented equiaxed grains, typically 10 to 30 nm in diameter. Occasionally, a lamellar structure was observed in which the lamellas were 100 to 200 nm in length and ∼24 nm wide. The morphology of the mixed nanostructures in the cryomilled samples indicated that high-angle grain boundaries (HAGBs) formed by a grain subdivision mechanism, a process similar to which occurs in heavily cold-rolled materials. The microstructural evidence suggests that the subdivision mechanism observed here governs the development of fine-grain microstructures during low-energy milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch: Nanostr. Mater., 1997, vol. 9, p. 13.

    Article  CAS  Google Scholar 

  2. H.J. Fecht: Nanostr. Mater., 1995, vol. 6, p. 33.

    Article  CAS  Google Scholar 

  3. X. Zhang, H. Wang, J. Narayan, and C.C. Koch: Acta Mater., 2001, vol. 49, p. 1319.

    Article  CAS  Google Scholar 

  4. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia: Metall. Mater. Trans., 1998, vol. 29A, pp. 2469–75.

    Article  CAS  Google Scholar 

  5. F. Zhou, J. Lee, S. Dallek, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, p. 3451.

    CAS  Google Scholar 

  6. F. Zhou, J. Lee, and E.J. Lavernia: Scripta Mater., 2001, vol. 44, p. 2013.

    Article  CAS  Google Scholar 

  7. F. Zhou, R. Rodriguez, and E.J. Lavernia: Mater. Sci. Forum, 2002, vol. 386–8, p. 409.

    Article  Google Scholar 

  8. J. Lee, F. Zhou, K.H. Chung, N.J. Kim, and E.J. Lavernia: Metall. Mater. Trans., 2001, vol. 32A, p. 3109

    Article  CAS  Google Scholar 

  9. J. He and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, p. 2724.

    CAS  Google Scholar 

  10. J.Y. Huang, X.Z. Liao, Y.T. Zhu, F. Zhou, and E.J. Lavernia: Phil. Mag. A, 2003, vol. 83, p. 1407.

    Article  CAS  Google Scholar 

  11. X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou, and E.J. Lavernia: Phil. Mag. A, in press.

  12. M.J. Luton, C.S. Jayanth, M.M. Disco, S. Matras, and J. Vallone: in Multicomponent Ultrafine Microstructures, L.E. McCandish, B.H. Kear, D.E. Polk, and R.W. Siegel, eds., Materials Research Society, Pittsburgh, PA, 1989, pp. 79–86.

    Google Scholar 

  13. B.S. Murty and S. Ranganathan: Int. Mater. Rev., 1998, vol. 43, p. 101.

    CAS  Google Scholar 

  14. J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Progr. Mater. Sci., 1980, vol. 25, p. 69.

    Article  CAS  Google Scholar 

  15. Y.T. Zhu and T.C. Lowe: Mater. Sci. Eng., 2001, vol. A 299, p. 59.

    Google Scholar 

  16. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe: Acta Mater., 2001, vol. 49, p. 1497.

    Article  CAS  Google Scholar 

  17. L.S. Toropova, D.G. Eskin, M.L. Kharakterova, and T.V. Dobatkina: Advanced Aluminum Alloys Containing Scandium: Structure and Properties, Gordon and Breach Science, Amsterdam, 1998.

    Google Scholar 

  18. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev: Acta Mater., 1998, vol. 46, p. 2789.

    Article  CAS  Google Scholar 

  19. H.L. Luo, C.C. Chao, and P. Duwez: Trans. TMS-AIME, 1964, vol. 230, p. 1488.

    CAS  Google Scholar 

  20. Binary Alloy Phase Diagram, T.B. Massalski, ed., ASM INTERNATIONAL, Metals Park, OH, 1991, p. 170.

    Google Scholar 

  21. C. Suryanarayana: Progr. Mater. Sci., 2000, vol. 46, p. 1.

    Article  Google Scholar 

  22. D.L. Zhang, T.B. Massalski, and M.R. Paruchuri: Metall. Mater. Trans., 1994, vol. 25A, pp. 73–79.

    CAS  Google Scholar 

  23. H.P. Klug and L. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, NY, 1974, p. 661.

    Google Scholar 

  24. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, p. 1751.

    CAS  Google Scholar 

  25. D. Oleszak and P.H. Shingu: J. Appl. Phy., 1996, vol. 79, p. 2975.

    Article  CAS  Google Scholar 

  26. F. Zhou, D. Witkin, S.R. Nutt, and E.J. Lavernia: Mater. Sci. Eng. A, in press.

  27. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Acta Mater., 2003, vol. 51, p. 2777.

    CAS  Google Scholar 

  28. T.G. Nieh and J. Wadsworth: Scripta Metall. Mater., 1991, vol. 25, p. 955.

    Article  CAS  Google Scholar 

  29. D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45, p. 3871.

    Article  CAS  Google Scholar 

  30. N. Hansen: Metall. Mater. Trans., 2001, vol. A 32, p. 2917.

    Article  Google Scholar 

  31. M. Richert, Q. Liu, and N. Hansen: Mater. Sci. Eng., 1999, vol. A260, p. 275.

    CAS  Google Scholar 

  32. G. Langford and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 901–10.

    CAS  Google Scholar 

  33. S.P. Bellier and R.D. Doherty: Acta Metall., 1977, vol. 25, p. 521.

    Article  CAS  Google Scholar 

  34. F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, and C. Harris: Phil. Trans. R. Soc. London A, 1999, vol. 357, p. 1663.

    Article  CAS  Google Scholar 

  35. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK, 1996, p. 369.

    Google Scholar 

  36. S. Weissmann, T. Imura, and N. Hosokawa: in Recovery and Recrystallization of Metals, L. Himmel, ed., Interscience Publishers, New York, NY, 1963, p. 241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., Nutt, S.R., Bampton, C.C. et al. Nanostructure in an Al-Mg-Sc alloy processed by low-energy ball milling at cryogenic temperature. Metall Mater Trans A 34, 1985–1992 (2003). https://doi.org/10.1007/s11661-003-0163-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0163-4

Keywords

Navigation