Skip to main content
Log in

High-temperature deformation behavior of coarse- and fine-grained MoSi2 with different silica contents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The elevated-temperature deformation behavior of polycrystalline molybdenum disilicide (MoSi2), in the range of 1000 °C to 1350 °C at the strain rates of 10−3, 5×10−4, or 10−4 s−1, has been studied. The yield strength, post-yield flow behavior comprising strain hardening and serrations, as well as some of the deformation microstructures of reaction-hot-pressed (RHP) MoSi2 samples, processed by hot pressing an elemental Mo + Si powder mixture and having a grain size of 5 µm and oxygen content of 0.06 wt pct, have been compared with those of samples prepared by hot pressing of commercial-grade Starck MoSi2 powder, with a grain size of 27 µm and oxygen content of 0.89 wt pct. While the fine-grained RHP MoSi2 samples have shown higher yield strength at relatively lower temperatures and higher strain rates, the coarse-grained Starck MoSi2 has a higher yield at decreasing strain rates and higher temperatures. The work-hardening or softening characteristics are dependent on grain size, temperature, and strain rate. Enhanced dislocation activity and dynamic recovery, accomplished by arrangement of dislocations in low-angle boundaries, characterize the deformation behavior of fine-grained RHP MoSi2 at a temperature of 1200 °C and above and are responsible for increased uniform plastic strain with increasing temperature. The silica content appears to be less effective in degrading the high-temperature yield strength if the grain size is coarse, but leads to plastic-flow localization and strain softening in Starck MoSi2. Serrated plastic flow has also been observed in a large number of samples, mostly when deformed at specific combinations of strain rates and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Petrovic: Ceram. Eng. Sci. Proc., 1997, vol. 18 (3), pp. 3–17.

    CAS  Google Scholar 

  2. R.M. Aikin, Jr.: Scripta Metall. Mater., 1992, vol. 26, pp. 1025–30.

    Article  CAS  Google Scholar 

  3. D.H. Carter, J.J. Petrovic, R.E. Honell, and W.S. Gibbs: Ceram. Sci. Eng. Proc., 1989, vol. 10, pp. 1121–29.

    CAS  Google Scholar 

  4. S.R. Srinivasan, R.B. Schwarz, and J.D. Embury: Materials Research Society Symp. Proc., Materials Research Society, Pittsburgh, PA, 1993, vol. 288, pp. 1099–1104.

    Google Scholar 

  5. S.R. Srinivasan and R.B. Schwarz: Novel Powder Processing, Advances in Powder Metallurgy and Particulate Materials—1992, MPIF, Princeton, NJ, 1992, vol. 7, pp. 345–58.

    Google Scholar 

  6. R. Mitra, Y.R. Mahajan, N.E. Prasad, and W.-A. Chiou: Mater. Sci. Eng. A, 1997, vol. 225, pp. 105–17.

    Article  Google Scholar 

  7. H. Chang, H. Kung, and R. Gibala: Materials Research Society Symp. Proc., D.B. Miracle, D.L. Anton, and J.A. Greaves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 253–58.

    Google Scholar 

  8. D.A. Hardwick, P.L. Martin, S.N. Patankar, and J.J. Lewandowski: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 665–74.

    Google Scholar 

  9. S.A. Maloy, A.H. Heuer, J.J. Lewandowski, and J.J. Petrovic: J. Am. Ceram. Soc., 1991, vol. 74 (10), pp. 2704–06.

    Article  CAS  Google Scholar 

  10. J.S. Jayahankar, E.N. Ross, P.D. Eason, and M.J. Kaufman: Mater. Sci. Eng., 1997, vol. A239, pp. 485–92.

    Google Scholar 

  11. J.J. Petrovic: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 31–37.

    Google Scholar 

  12. R.M. Aikin, Jr.: Mater. Sci. Eng. A., 1992, vol. 155, pp. 121–33.

    Article  Google Scholar 

  13. K. Ito, H. Inui, Y. Shirai, and M. Yamaguchi: Phil. Mag., 1992, vol. A72, pp. 1075–97.

    Google Scholar 

  14. S.A. Maloy, A.H. Heuer, J.J. Lewandowski, and T.E. Mitchell: Acta Metall. Mater., 1992, vol. 40 (11), pp. 3159–65.

    Article  CAS  Google Scholar 

  15. K. Ito, T. Yano, T. Nakamoto, H. Inui, and M. Yamaguchi: Intermetallics, 1996, vol. 4, pp. S119-S131.

    Article  CAS  Google Scholar 

  16. O. Unal, J.J. Petrovic, D.H. Carter, and T.E. Mitchell: J. Am. Ceram. Soc., 1990, vol. 73 (6), pp. 1752–57.

    Article  CAS  Google Scholar 

  17. D.J. Evans, F.J. Scheltens, J.B. Woodhouse, and H.L. Fraser: Phil. Mag., 1997, vol. 75 (1), pp. 1–15.

    Article  CAS  Google Scholar 

  18. D.J. Evans, F.J. Scheltens, J.B. Woodhouse, and H.L. Fraser: Phil. Mag., 1997, vol. 75 (1), pp. 17–30.

    CAS  Google Scholar 

  19. S.A. Maloy, T.E. Mitchell, J.J. Lewandowski, and A.H. Heuer: Phil. Mag. Lett., 1993, vol. 67 (5), pp. 313–21.

    CAS  Google Scholar 

  20. D.J. Evans, S.A. Court, P.M. Hazzeldine, and H.L. Fraser: Phil. Mag. Lett., 1993, vol. 67 (5), pp. 331–41.

    CAS  Google Scholar 

  21. Y. Umakoshi, T. Sakagami, T. Hirano, and T. Yamane: Acta Metall. Mater., 1990, vol. 38 (6), pp. 909–15.

    Article  CAS  Google Scholar 

  22. S.A. Maloy, T.E. Mitchell, and A.H. Heuer: Acta Metall. Mater., 1995, vol. 43 (2), pp. 657–68.

    Article  CAS  Google Scholar 

  23. U. Messerschmidt, M. Bartsch, S. Guder, D. Häuβler, R. Haushälter, and M. Yamaguchi: Intermetallics, 1998, vol. 6, pp. 729–33.

    Article  CAS  Google Scholar 

  24. S. Guder, M. Bartsch, M. Yamaguchi, and U. Messerschmidt: Mater. Sci. Eng., 1999, vol. A261, pp. 139–46.

    CAS  Google Scholar 

  25. K. Ito, K. Matsuda, Y. Shirai, H. Inui, and M. Yamaguchi: Mater. Sci. Eng., 1999, vol. A261, pp. 99–105.

    CAS  Google Scholar 

  26. J.J. Petrovic, R.E. Honnell, T.E. Mitchell, R.K. Wade, and K.J. McCellan: Ceram. Sci. Eng. Proc., 1991, vol. 12 (9–10), pp. 1633–42.

    Article  CAS  Google Scholar 

  27. R. Gibala, H. Chang, C.M. Czarnik, K.M. Edwards, and A. Misra: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 561–67.

    Google Scholar 

  28. J.P. Campbell, H. Chang, and R. Gibala: Materials Research Society Symp. Proc., Materials Research Society Pittsburgh, PA, 1995, vol. 364, pp. 893–98.

    Google Scholar 

  29. K. Sadananda, C.R. Feng, H.N. Jones, and J.J. Petrovic: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 809–18.

    Google Scholar 

  30. A.K. Ghosh and A. Basu: Critical Issues in the Development of High Temperature Structural Materials, N.S. Stoloff, D.J. Duguatte, and A.F. Gramaei, eds., TMS, Warrendale, PA, 1993.

    Google Scholar 

  31. K. Sadananda and C.R. Feng: Mater. Sci. Eng. A, 1995, vols. 192–93, pp. 862–67.

    Google Scholar 

  32. K. Sadananda, C.R. Feng, R. Mitra, and S.C. Deevi: Mater. Sci. Eng. A, 1999, vol. 261, pp. 223–38.

    Article  Google Scholar 

  33. K. Tanaka, H. Onome, H. Inui, M. Yamaguchi, and M. Koiwa: Mater. Sci. Eng. A, 1997, vols. A239–A240, pp. 188–94.

    Google Scholar 

  34. J.C.M. Li: Trans. TMS-AIME, 1963, vol. 227, pp. 239–47.

    CAS  Google Scholar 

  35. H. Gleiter, E. Hornbogen, and G. Baro: Acta Metall., 1968, vol. 16, pp. 1053–67.

    Article  CAS  Google Scholar 

  36. C.W. Price and J.P. Hirth: Mater. Sci. Eng. A, 1972, vol. 9, pp. 15–18.

    Article  CAS  Google Scholar 

  37. J. Weertman: J. Appl. Phys., 1955, vol. 26, pp. 1213–17.

    Article  CAS  Google Scholar 

  38. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  39. P. Ludwik: elemente der Technologischen Mechanik, Springer, Berlin, 1909, p. 32.

    Google Scholar 

  40. S.V. Ramani and P. Rodriguez: Scripta Metall., 1970, vol. 4, pp. 755–60.

    Article  CAS  Google Scholar 

  41. E.W. Hart: Acta Metall., 1967, vol. 15, pp. 351–55.

    Article  CAS  Google Scholar 

  42. J.J. Jonas, R.A. Holt, and C.E. Coleman: Acta Metall., 1976, vol. 24, pp. 911–18.

    Article  Google Scholar 

  43. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  44. J.P. Hirth: Metall. Trans., 1972, vol. 3, pp. 3047–67.

    CAS  Google Scholar 

  45. J.P. Hirth and J. Lothe: Theory of Dislocations, John Wiley and Sons, New York, NY, 1982, p. 639.

    Google Scholar 

  46. R. Schroll and P. Gumbsch: Phys. Status Solidi, 1998, vol. A166, pp. 475–88.

    Google Scholar 

  47. J. Lothe: Acta Metall., 1962, vol. 10, pp. 663–70.

    Article  CAS  Google Scholar 

  48. R. Mitra, K. Sadananda, and C.R. Feng: submitted to Intermetallics.

  49. G.E. Dieter: Mechanical Metallurgy, 3rd International ed., McGraw-Hill Book Company, Singapore, 1986, pp. 172 and 200.

    Google Scholar 

  50. W.G. Johnston and J.J. Gilman: J. Appl. Phys., 1959, vol. 30, pp. 129–44.

    Article  CAS  Google Scholar 

  51. J.J. Gilman and W.G. Johnston: J. Appl. Phys., 1960, vol. 31, pp. 687–92.

    Article  CAS  Google Scholar 

  52. G.R. Kegg, C.A.P. Horton, and J.M. Silcock: Phil. Mag., 1973, vol. 27, pp. 1041–55.

    CAS  Google Scholar 

  53. A.I. Pshenichnyuk, V.V. Astanin, and O.A. Kaibyshev: Phil. Mag. A, 1998, vol. 77, pp. 1093–1106.

    Article  CAS  Google Scholar 

  54. R. Mitra and A. Venugopal Rao: Trans. Ind. Ceram. Soc., 2001, vol. 60 (1), pp. 12–20.

    CAS  Google Scholar 

  55. R. Mitra, V.V. Rama Rao, and A. Venugopal Rao: Intermetallics, 1999, vol. 7, pp. 213–32.

    Article  CAS  Google Scholar 

  56. R.E. Reedhill: Physical Metallurgy Principles, 2nd ed. Affiliated East-West Press Pvt. Ltd., New Delhi, India, (published with permission from Litton Educational Publishing Inc., New York, NY), 1973, p. 284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, R., Prasad, N.E., Kumari, S. et al. High-temperature deformation behavior of coarse- and fine-grained MoSi2 with different silica contents. Metall Mater Trans A 34, 1069–1088 (2003). https://doi.org/10.1007/s11661-003-0127-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0127-8

Keywords

Navigation