Skip to main content
Log in

Influence of Al and Ni concentration on the Martensitic transformation in Cu-Al-Ni shape-memory alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The martensitic transformation temperatures and the types of martensitic phases have been determined in a wide concentration range of technological interest for Cu-Al-Ni shape-memory alloys (SMAs) A stability diagram of martensitic phases as a function of alloy concentration has been determined. It is found that when the aluminum content increases, the transformation changes from β 3β3 to β 3γ3, with an intermediate concentration range where both martensites coexist due to a β 3γ3+β3 transformation. On the other hand, an increase of nickel content stabilizes the martensite β3, changing from a mixed β 3γ3 + β3 to a single β 3β3 transformation. Furthermore, linear relationships between M s and Al and Ni concentrations have been obtained for all types of martensitic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shape Memory and Superelastic Technologies, Proc. SMST-94, MIAS, Monterey, CA, 1995. Asilomar, CA, 1994, A.R. Pelton, D. Hodgson, and T.W. Duering, eds.

  2. L. Delaey: in Phase Transformation in Materials, P. Haasen, ed., VCH, Weinheim, Germany, 1991, pp. 339–404.

    Google Scholar 

  3. T. Tadaki: in Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 97–116.

    Google Scholar 

  4. J. San Juan, R.B. Pérez-Sáez, V. Recarte, I. Sáez-Ocáriz, M.L. Nó, and O.A. Ruano: Proc. 3rd Int. Conf. on Intelligent Materials, P.F. Gobin and J. Tatibonet, eds., SPIE Editions, Washington, DC, 1996, vol. 2779, pp. 469–74.

    Google Scholar 

  5. R.B. Pérez-Sáez, V. Recarte, M.L. Nó, O.A. Ruano, and J. San Juan: Adv. Eng. Mater., 2000, vol. 2, pp. 49–52.

    Article  Google Scholar 

  6. V. Recarte, R.B. Pérez-Sáez, M.L. Nó, and J. San Juan: J. Mater. Res., 1999, vol. 14, pp. 2806–13.

    CAS  Google Scholar 

  7. V. Recarte, O.A. Lambri, R.B. Pérez-Sáez, M.L. Nó, and J. San Juan: Appl. Phys. Lett., 1997, vol. 70, pp. 3513–15.

    Article  CAS  Google Scholar 

  8. P.P. Rodriguez, J. San Juan, J.P. Morniroli, and M.L. No: Proc. Microscopy, Barcelona 2001, Universitat de Barcelona, Barcelona, 2001, p. 459.

    Google Scholar 

  9. L. Delaey and M. Chandrasekaran: Scripta Metall. Mater., 1994, vol. 30, pp. 1605–10.

    Article  CAS  Google Scholar 

  10. V. Recarte: Ph.D. Thesis, Universidad del País Vasco, Bilbao, Spain, 1997.

  11. A.Y. Vasilenko, V.A. Sal’nikov, and A.T. Kosilov: Phys. Met., 1982, vol. 4, pp. 694–701.

    Google Scholar 

  12. C.M. Friend: Scripta Metall., 1989, vol. 23, pp. 1817–20.

    Article  CAS  Google Scholar 

  13. J. Van Humbeeck, D. Van Hulle, L. Delaey, J. Ortín, C. Seguí, and V. Torra: Mater. Trans. JIM, 1987, vol. 28, pp. 383–91.

    Google Scholar 

  14. C.M. Friend, J. Ortín, A. Planes, Ll. Mañosa, and M. Yoshikawa: Scripta Metall. Mater., 1990, vol. 24, pp. 1641–45.

    Article  CAS  Google Scholar 

  15. V. Agafonov, P. Naudot, A. Dubertret, and B. Dubois: Scripta Metall., 1988, vol. 22, pp. 489–94.

    Article  CAS  Google Scholar 

  16. V. Recarte, M.L. Nó, and J. San Juan: J. Phys. IV, 1995, vol. 5, pp. 175–80.

    Google Scholar 

  17. H. Sakamoto and K. Shimizu: Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 395–404.

    CAS  Google Scholar 

  18. V. Recarte, R.B. Pérez-Sáez, M.L. Nó, and J. San Juan: J. Appl Phys., 1999, vol. 86, pp. 5467–73.

    Article  CAS  Google Scholar 

  19. M. Ahlers: Progr. Mater. Sci., 1986, vol. 30, pp. 135–86.

    Article  CAS  Google Scholar 

  20. N. Mwanba: Ph.D. Thesis, Katholike Universiteit Leuven, Leuven, Belgium, 1984.

    Google Scholar 

  21. K. Sugimoto: Bull. Jpn. Inst. Met., 1985, vol. 24, pp. 45–51.

    CAS  Google Scholar 

  22. Z. Ximming, L. Siong, Z. Yun, M. Jialong, and N. Yuantao: Proc. Int. Symp. on Shape Memory Alloys, Gullin, China, 1986, pp. 261–66.

    Google Scholar 

  23. P. Rodriguez: Ph.D. Thesis, INSA Lyon, France, 1989.

    Google Scholar 

  24. K. Mukunthan and L.C. Brown: Metall. Trans. A, 1988, vol. 19A, pp. 2921–29.

    CAS  Google Scholar 

  25. K. Sugimoto, K. Kamei, H. Matsumoto, S. Komatsu, K. Akamatsu, and T. Sugimoto: J. Phys., 1982, vol. 43, pp. C4-761–C4-766.

    Google Scholar 

  26. Ternary Alloys, G. Petzow and G. Effenberg, eds., VCH, Weinheim, Germany, 1991, vol. 4.

    Google Scholar 

  27. J. Ortín, Ll, Mañosa, C.M. Friend, A. Planes, and M. Yoshikawa: Phil. Mag. A, 1992, vol. 65, pp. 461–75.

    Google Scholar 

  28. C. Seguí, E. Cesari, and J. Van Humbeeck: Mater. Trans. JIM, 1990, vol. 31, pp. 375–80.

    Google Scholar 

  29. J. Ortín and A. Planes: Acta Metall., 1988, vol. 36, pp. 1873–89.

    Article  Google Scholar 

  30. N. Kuwano and C.M. Wayman: Metall. Trans. A, 1984, vol. 15A, pp. 621–26.

    CAS  Google Scholar 

  31. H. Sakamoto, M. Yoshikawa, and K. Shimizu: Mater. Trans. JIM, 1990, vol. 31, pp. 848–54.

    CAS  Google Scholar 

  32. P. Duval and P. Hayman: Mem. Sci. Rev. Métall., 1971, vol. LXVIII, pp. 55–63.

    Google Scholar 

  33. V. Recarte, I. Hurtado, J. Herreros, M.L. Nó, and J. San Juan: Scripta Mater., 1996, vol. 34, pp. 255–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recarte, V., Pérez-Sáez, R.B., San Juan, J. et al. Influence of Al and Ni concentration on the Martensitic transformation in Cu-Al-Ni shape-memory alloys. Metall Mater Trans A 33, 2581–2591 (2002). https://doi.org/10.1007/s11661-002-0379-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0379-8

Keywords

Navigation