Skip to main content
Log in

Observations, theories, and predictions of high-temperature creep behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The key observations that have underpinned traditional power-law approaches to creep mechanism identification have been re-evaluated, using information obtained for aluminum, copper, and 0.5Cr0.5Mo0.25V steel. In particular, stress/creep rate plots produced over extended stress ranges for all three materials are shown to be well represented by continuous curves, contradicting the common assumption that different creep mechanisms are dominant over different stress/temperature regimes. Evidence is also introduced to demonstrate that the theoretical and practical limitations of power-law descriptions of steady-state creep rates can be overcome by quantifying the shapes of normal creep curves and the variations in curve shape with changing test conditions. In this way, the behavior patterns displayed by pure metals and particle-hardened alloys can be interpreted in terms of the deformation processes controlling creep-strain accumulation and the damage/degradation processes causing the creep rate to accelerate into the tertiary stages that usually precede fracture. Moreover, the superior predictive capabilities of curve shape analysis are then illustrated by results showing that short-term property values can be extrapolated to provide accurate long-term engineering design data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.S. Servi and N.J. Grant: J. Met., 1951, vol. 191, pp. 909–16.

    Google Scholar 

  2. J.G. Harper and J.E. Dom: Acta Metall., 1957, vol. 5, pp. 654–65.

    Article  CAS  Google Scholar 

  3. J.G. Harper, L.A. Shepard, and J.E. Dorn: Acta Metall., 1958, vol. 6, pp. 509–18.

    Article  CAS  Google Scholar 

  4. C.R. Barrett, E.C. Muehleisen, and W.D. Nix: Mater. Sci. Eng., 1972, vol. 10, pp. 33–42.

    Article  CAS  Google Scholar 

  5. A.J. Ardell and S.S. Lee: Acta Metall., 1986, vol. 34, pp. 2411–23.

    Article  CAS  Google Scholar 

  6. H. Luthy, A.K. Miller, and O.D. Sherby: Acta Metall., 1988, vol. 28, pp. 169–78.

    Google Scholar 

  7. J.D. Parker and B. Wilshire: Phil. Mag., 1980, vol. 41, pp. 665–80.

    CAS  Google Scholar 

  8. E.H. Aigeltinger and R.C. Gifkins: J. Mater. Sci., 1975, vol. 10, pp. 1889–1903.

    Article  CAS  Google Scholar 

  9. O.A. Ruano, J. Wadsworth, and O.D. Sherby: Acta Metall., 1988, vol. 36, pp. 1117–28.

    Article  CAS  Google Scholar 

  10. B. Wilshire: 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., The Institute of Materials, London, 1990, pp. 1–9.

    Google Scholar 

  11. B. Burton and G.L. Reynolds: Mater. Sci. Eng., 1995, vol. A191, pp. 135–41.

    CAS  Google Scholar 

  12. G.L. Greenwood: Creep Behaviour of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., TMS, Warrendale, PA, 1999, pp. 413–23.

    Google Scholar 

  13. J. Wadsworth, O.A. Ruano, and O.D. Sherby: Creep Behaviour of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., TMS, Warrendale, PA, 1999, pp. 425–39.

    Google Scholar 

  14. B. Wilshire: Creep Behaviour of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., Warrendale, PA, 1999, pp. 451–60.

  15. K.R. McNee, G.W. Greenwood, and H. Jones: Scripta Mater., 2001, vol. 44, pp. 351–57.

    Article  CAS  Google Scholar 

  16. F.R.N. Nabarro: Report on Conf. on Strength of Solids, The Physical Society, London, 1948, pp. 75–87.

    Google Scholar 

  17. C. Herring: J. Appl. Phys., 1950, vol. 21, pp. 437–45.

    Article  Google Scholar 

  18. R.L. Coble: J. Appl. Phys., 1963, vol. 34, pp. 1679–82.

    Article  Google Scholar 

  19. R.W. Evans and B. Wilshire: Creep of Metals and Alloys, The Institute of Metals, London, 1985.

    Google Scholar 

  20. F.A. Mohamed and T.J. Ginter: Acta Metall., 1982, vol. 30, pp. 1869–81.

    Article  Google Scholar 

  21. B. Burton: Phil. Mag., 1972, vol. 25, pp. 645–59.

    Google Scholar 

  22. W. Blum and W. Maier: Phys. Status Solidi, 1999, vol. 171a, pp. 467–74.

    Google Scholar 

  23. K.R. McNee, H. Jones, and G.W. Greenwood: 19th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., The Institute of Materials, London, 2001, pp. 185–95.

    Google Scholar 

  24. B. Burton and G.W. Greenwood: Met. Sci. J., 1970, vol. 4, pp. 215–18.

    CAS  Google Scholar 

  25. B. Burton and G.W. Greenwood: Acta Metall., 1970, vol. 18, pp. 1237–42.

    Article  CAS  Google Scholar 

  26. B. Wilshire and C.J. Palmer: Scripta Mater., 2001, in press.

  27. C.R. Barrett, J.L. Lytton, and O.D. Sherby: Trans. AIME, 1967, vol. 239, pp. 170–80.

    CAS  Google Scholar 

  28. E.R. Parker: Trans. ASM, 1958, vol. 50, pp. 52–104.

    Google Scholar 

  29. P. Feltham and J.D. Meakin: Acta Metall., 1959, vol. 7, pp. 614–27.

    Article  CAS  Google Scholar 

  30. Z. Kowalewski: Arch. Met., 1992, vol. 37, pp. 65–76.

    CAS  Google Scholar 

  31. D. Hansen: Trans. AIME, 1939, vol. 133, pp. 15–57.

    Google Scholar 

  32. P. Shahinian and J.R. Lane: Trans. ASM, 1953, vol. 45, pp. 177–99.

    Google Scholar 

  33. F. Garofalo, W.F. Domis, and F. van Gemmingen: Trans. TMS-AIME, 1964, vol. 230, pp. 1460–67.

    CAS  Google Scholar 

  34. D.G. Morris: Met. Sci. J., 1978, vol. 12, pp. 19–29.

    CAS  Google Scholar 

  35. S.L. Mannan and P. Rodriques: Met. Sci. J., 1983, vol. 17, pp. 63–69.

    Article  Google Scholar 

  36. R.W. Evans and B. Wilshire: Introduction of Creep, The Institute of Materials, London, 1993.

    Google Scholar 

  37. M. Pahutova, J. Cadek, and P. Rys: Phil. Mag., 1971, vol. 23, pp. 509–17.

    CAS  Google Scholar 

  38. R.W. Evans, J.D. Parker, and B. Wilshire: Recent Advances in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1982, pp. 135–84.

    Google Scholar 

  39. K.R. Williams and B. Wilshire: Met. Sci. J., 1975, vol. 7, pp. 176–79.

    Google Scholar 

  40. J.D. Parker and B. Wilshire: Met. Sci., 1975, vol. 9, pp. 248–52.

    Article  CAS  Google Scholar 

  41. E. Arzt: Res. Mech., 1991, vol. 31, pp. 399–453.

    Google Scholar 

  42. C.N. Ahlquist and W.D. Nix: Acta Metall., 1971, vol. 19, pp. 373–85.

    Article  Google Scholar 

  43. J.C. Gibeling and W.D. Nix: Met. Sci. J., 1977, vol. 11, pp. 453–57.

    CAS  Google Scholar 

  44. M.E. Kassner: Mater. Sci. Eng., 1993, vol. A166, pp. 81–88.

    CAS  Google Scholar 

  45. R.L. Orr, O.D. Sherby, and J.E. Dom: Trans. ASM., 1954, vol. 46, pp. 113–28.

    CAS  Google Scholar 

  46. R.J. Brown, B.J. Cane, J.D. Parker, and D.J. Walters: Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1981, pp. 645–57.

    Google Scholar 

  47. R.W. Evans and B. Wilshire: Unified Constitutive Laws of Plastic Deformation, A.S. Krausz and K. Krausz, eds., Academic Press, New York, NY, 1996, pp. 107–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilshire, B. Observations, theories, and predictions of high-temperature creep behavior. Metall Mater Trans A 33, 241–248 (2002). https://doi.org/10.1007/s11661-002-0086-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0086-5

Keywords

Navigation