Skip to main content
Log in

Creep, fatigue, and fracture behavior of high-entropy alloys

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

As high-entropy alloys (HEAs) are being actively explored for next-generation structural materials, gaining a comprehensive understanding of their creep, fatigue, and fracture behaviors is indispensable. These three aspects of mechanical properties are particularly important because (i) creep resistance dictates an alloy’s high-temperature applications; (ii) fatigue failure is the most frequently encountered failure mode in the service life of a material; (iii) fracture is the very last step that a material loses its load-carrying capability. In consideration of their importance in designing HEAs toward applicable structural materials, this article offers a comprehensive review on what has been accomplished so far in these three topics. The sub-topics covered include a comparison of different creep testing methods, creep-parameter extraction, creep mechanism, high-cycle fatigue SN relation, fatigue-crack-growth behavior, fracture toughness, fracture under different loading conditions, and fractography. Directions for future efforts are suggested in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  3. D. Miracle and O. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  4. O.N. Senkov and S.L. Semiatin: Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 649, 1110 (2015).

    Article  CAS  Google Scholar 

  5. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    Article  CAS  Google Scholar 

  6. W. Zhang, P.K. Liaw, and Y. Zhang: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).

    Article  CAS  Google Scholar 

  7. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).

    Article  CAS  Google Scholar 

  8. S. Guo, C. Ng, J. Lu, and C. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  9. M. Yao, K. Pradeep, C. Tasan, and D. Raabe: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Mater. 72, 5 (2014).

    Article  Google Scholar 

  10. C-Y. Hsu, C-C. Juan, W-R. Wang, T-S. Sheu, J-W. Yeh, and S-K. Chen: On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng., A 528, 3581 (2011).

    Article  Google Scholar 

  11. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).

    Article  CAS  Google Scholar 

  12. O. Senkov, S. Senkova, and C. Woodward: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).

    Article  CAS  Google Scholar 

  13. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  14. Y. Zou, H. Ma, and R. Spolenak: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).

    Article  Google Scholar 

  15. J. He, H. Wang, H. Huang, X. Xu, M. Chen, Y. Wu, X. Liu, T. Nieh, K. An, and Z. Lu: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).

    Article  CAS  Google Scholar 

  16. J-M. Wu, S-J. Lin, J-W. Yeh, S-K. Chen, Y-S. Huang, and H-C. Chen: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513 (2006).

    Article  CAS  Google Scholar 

  17. C-Y. Hsu, T-S. Sheu, J-W. Yeh, and S-K. Chen: Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 268, 653 (2010).

    Article  CAS  Google Scholar 

  18. Y.Z. Shi, B. Yang, and P.K. Liaw: Corrosion-resistant high-entropy alloys: A reveiw. Metals 7, 43 (2017).

    Article  Google Scholar 

  19. Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw: Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119, 33 (2013).

    Article  Google Scholar 

  20. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).

    Article  CAS  Google Scholar 

  21. Z. Tang, T. Yuan, C-W. Tsai, J-W. Yeh, C.D. Lundin, and P.K. Liaw: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).

    Article  CAS  Google Scholar 

  22. P. Chen, C. Lee, S-Y. Wang, M. Seifi, J.J. Lewandowski, K.A. Dahmen, H. Jia, X. Xie, B. Chen, J-W. Yeh, C-W. Tsai, T. Yuan, and P.K. Liaw: Fatigue behavior of high-entropy alloys: A review. Sci. China Technol. Sci. 61, 168 (2017).

    Article  Google Scholar 

  23. H. Zhang, Y. He, and Y. Pan: Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scripta Mater. 69, 342 (2013).

    Article  CAS  Google Scholar 

  24. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).

    Article  CAS  Google Scholar 

  25. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).

    Article  CAS  Google Scholar 

  26. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).

    Article  CAS  Google Scholar 

  27. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 1 (2007).

    Article  CAS  Google Scholar 

  28. M.C. Gao, J-W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys (Springer, Switzerland, 2016).

    Book  Google Scholar 

  29. T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, and H. Wang: The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater. Lett. 164, 344 (2016).

    Article  CAS  Google Scholar 

  30. T-K. Tsao, A-C. Yeh, C-M. Kuo, K. Kakehi, H. Murakami, J-W. Yeh, and S-R. Jian: The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7, 12658 (2017).

    Article  Google Scholar 

  31. L. Zhang, P. Yu, H. Cheng, H. Zhang, H. Diao, Y. Shi, B. Chen, P. Chen, R. Feng, J. Bai, Q. Jing, M. Ma, P.K. Liaw, G. Li, and R. Liu: Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 47, 5871 (2016).

    Article  CAS  Google Scholar 

  32. Z-M. Jiao, S-G. Ma, G-Z. Yuan, Z-H. Wang, H-J. Yang, and J-W. Qiao: Plastic deformation of Al0.3CoCrFeNi and AlCoCrFeNi high-entropy alloys under nanoindentation. J. Mater. Eng. Perform. 24, 3077 (2015).

    Article  CAS  Google Scholar 

  33. D-H. Lee, M-Y. Seok, Y. Zhao, I-C. Choi, J. He, Z. Lu, J-Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J-i. Jang: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).

    Article  CAS  Google Scholar 

  34. Y. Ma, G.J. Peng, D.H. Wen, and T.H. Zhang: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng., A 621, 111 (2015).

    Article  CAS  Google Scholar 

  35. Y. Ma, Y.H. Feng, T.T. Debela, G.J. Peng, and T.H. Zhang: Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Met. Hard Mater. 54, 395 (2016).

    Article  CAS  Google Scholar 

  36. M. Seifi, D. Li, Z. Yong, P.K. Liaw, and J.J. Lewandowski: Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM 67, 2288 (2015).

    Article  CAS  Google Scholar 

  37. K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, and R.O. Ritchie: Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 88, 65 (2017).

    Article  CAS  Google Scholar 

  38. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 2017).

    Book  Google Scholar 

  39. G.E. Dieter and D.J. Bacon: Mechanical Metallurgy (McGraw-Hill, Singapore, 1988).

    Google Scholar 

  40. D. Caillard and J-L. Martin: Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, U.K., 2003).

    Google Scholar 

  41. H. Somekawa and C.A. Schuh: Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys. Acta Mater. 59, 7554 (2011).

    Article  CAS  Google Scholar 

  42. M.A. Howes: Additional Thermal Fatigue Data on Nickel and Cobalt-base Superalloys (NASA Report, Clevaland, OH, 1973).

    Google Scholar 

  43. A. Ohtomo and Y. Saiga: Directional solidification of Rene 80. Trans. Jpn. Inst. Met. 17, 323 (1976).

    Article  Google Scholar 

  44. H. Rouault-Rogez, M. Dupeux, and M. Ignat: High temperature tensile creep of CMSX-2 nickel base superalloy single crystals. Acta Metall. Mater. 42, 3137 (1994).

    Article  CAS  Google Scholar 

  45. I-C. Choi, B-G. Yoo, Y-J. Kim, M-Y. Seok, Y. Wang, and J-i. Jang: Estimating the stress exponent of nanocrystalline nickel: Sharp versus spherical indentation. Scripta Mater. 65, 300 (2011).

    Article  CAS  Google Scholar 

  46. C.L. Wang, Y.H. Lai, J.C. Huang, and T.G. Nieh: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scripta Mater. 62, 175 (2010).

    Article  CAS  Google Scholar 

  47. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1987).

    Google Scholar 

  48. H. Conrad: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).

    Article  Google Scholar 

  49. C. Hans: Plastic deformation kinetics in nanocrystalline FCC metals based on the pile-up of dislocations. Nanotechnology 18, 325701 (2007).

    Article  Google Scholar 

  50. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, U.K., 1982).

    Google Scholar 

  51. J. Dean, A. Bradbury, G. Aldrich-Smith, and T.W. Clyne: A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mech. Mater. 65, 124 (2013).

    Article  Google Scholar 

  52. D. Dorner, K. Röller, B. Skrotzki, B. Stöckhert, and G. Eggeler: Creep of a TiAl alloy: A comparison of indentation and tensile testing. Mater. Sci. Eng., A 357, 346 (2003).

    Article  Google Scholar 

  53. P.S. Phani and W.C. Oliver: A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum. Acta Mater. 111, 31 (2016).

    Article  CAS  Google Scholar 

  54. C. Su, E.G. Herbert, S. Sohn, J.A. LaManna, W.C. Oliver, and G.M. Pharr: Measurement of power-law creep parameters by instrumented indentation methods. J. Mech. Phys. Solid. 61, 517 (2013).

    Article  Google Scholar 

  55. S. Suresh: Fatigue of Materials (Cambridge University Press, Cambridge, U.K., 1998).

    Book  Google Scholar 

  56. ASTM E647-15e1: Standard Test Method for Measurement of Fatigue Crack Growth Rates (ASTM International, West Conshohocken, PA, 2015).

    Google Scholar 

  57. ASTM E399-17: Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials (ASTM International, West Conshohocken, PA, 2017).

    Google Scholar 

  58. ASTM E1820-17: Standard Test Method for Measurement of Fracture Toughness (ASTM International, West Conshohocken, PA, 2017).

    Google Scholar 

  59. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    Article  CAS  Google Scholar 

  60. R.O. Ritchie and J.F. Knott: Mechanisms of fatigue crack growth in low alloy steel. Acta Metall. 21, 639 (1973).

    Article  CAS  Google Scholar 

  61. A.B. El-Shabasy and J.J. Lewandowski: Effects of load ratio, R, and test temperature on fatigue crack growth of fully pearlitic eutectoid steel (fatigue crack growth of pearlitic steel). Int. J. Fatig. 26, 305 (2004).

    Article  CAS  Google Scholar 

  62. L. Xiao, D.L. Chen, and M.C. Chaturvedi: Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 °C. Mater. Sci. Eng., A 428, 1 (2006).

    Article  Google Scholar 

  63. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson: Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).

    Article  CAS  Google Scholar 

  64. U. Roy, H. Roy, H. Daoud, U. Glatzel, and K.K. Ray: Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system. Mater. Lett. 132, 186 (2014).

    Article  CAS  Google Scholar 

  65. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).

    Article  CAS  Google Scholar 

  66. A. Zhang, J. Han, J. Meng, B. Su, and P. Li: Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181, 82 (2016).

    Article  CAS  Google Scholar 

  67. A.J. Zaddach, R.O. Scattergood, and C.C. Koch: Tensile properties of low-stacking fault energy high-entropy alloys. Mater. Sci. Eng., A 636, 373 (2015).

    Article  CAS  Google Scholar 

  68. A. Gali and E.P. George: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).

    Article  CAS  Google Scholar 

  69. Y. Zhao, D-H. Lee, M-Y. Seok, J-A. Lee, M.P. Phaniraj, J-Y. Suh, H-Y. Ha, J-Y. Kim, U. Ramamurty, and J-i. Jang: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scripta Mater. 135, 54 (2017).

    Article  CAS  Google Scholar 

  70. H. Luo, Z. Li, and D. Raabe: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).

    Article  Google Scholar 

  71. J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu: Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics 55, 9 (2014).

    Article  CAS  Google Scholar 

  72. J. Joseph, N. Stanford, P. Hodgson, and D.M. Fabijanic: Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy. Scripta Mater. 129, 30 (2017).

    Article  CAS  Google Scholar 

  73. S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, and Y. Zhang: Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics 54, 104 (2014).

    Article  CAS  Google Scholar 

  74. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014).

    Article  CAS  Google Scholar 

  75. H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).

    Article  Google Scholar 

  76. S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, and S. Guo: Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902 (2016).

    Article  Google Scholar 

  77. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).

    Article  CAS  Google Scholar 

  78. Z.Y. Rao, X. Wang, J. Zhu, X.H. Chen, L. Wang, J.J. Si, Y.D. Wu, and X.D. Hui: Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties. Intermetallics 77, 23 (2016).

    Article  CAS  Google Scholar 

  79. J. Joseph, N. Stanford, P. Hodgson, and D.M. Fabijanic: Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloys Compd. 726, 885 (2017).

    Article  CAS  Google Scholar 

  80. E. Ghassemali, R. Sonkusare, K. Biswas, and N.P. Gurao: In-situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J. Alloys Compd. 710, 539 (2017).

    Article  CAS  Google Scholar 

  81. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, and P.K. Liaw: Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647, 229 (2015).

    Article  CAS  Google Scholar 

  82. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).

    Article  CAS  Google Scholar 

  83. S. Maiti and W. Steurer: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).

    Article  CAS  Google Scholar 

  84. F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, and C.T. Liu: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).

    Article  CAS  Google Scholar 

  85. T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, and A. Chiba: First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater. Lett. 159, 12 (2015).

    Article  CAS  Google Scholar 

  86. S.Q. Xia, M.C. Gao, and Y. Zhang: Abnormal temperature dependence of impact toughness in AlxCoCrFeNi system high entropy alloys. Mater. Chem. Phys. 210, 213 (2017).

    Article  Google Scholar 

  87. D. Li and Y. Zhang: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).

    Article  CAS  Google Scholar 

  88. Z. Li, S. Zhao, H. Diao, P.K. Liaw, and M.A. Meyers: High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Sci. Rep. 7, 42742 (2017).

    Article  CAS  Google Scholar 

  89. S.G. Ma, Z.M. Jiao, J.W. Qiao, H.J. Yang, Y. Zhang, and Z.H. Wang: Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Mater. Sci. Eng., A 649, 35 (2016).

    Article  CAS  Google Scholar 

  90. Z.M. Jiao, S.G. Ma, M.Y. Chu, H.J. Yang, Z.H. Wang, Y. Zhang, and J.W. Qiao: Superior mechanical properties of AlCoCrFeNiTix high-entropy alloys upon dynamic loading. J. Mater. Eng. Perform. 25, 451 (2016).

    Article  CAS  Google Scholar 

  91. Z. Zhang, H. Zhang, Y. Tang, L.a. Zhu, Y. Ye, S. Li, and S. Bai: Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53. Mater. Des. 133, 435 (2017).

    Article  CAS  Google Scholar 

  92. W.F. Brown, C.Y. Ho, and H. Mindlin: Aerospace Structural Metals Handbook (CINDSA-USAF CRDA Handbooks Operation, Purdue University, Lafayette, New York, 1979).

    Google Scholar 

  93. ASM International Handbook Committee: Metals Handbook: Properties and Selection (ASM International, Novelty, Ohio, 1990).

    Google Scholar 

  94. G.Y. Wang, P.K. Liaw, Y. Yokoyama, A. Inoue, and C.T. Liu: Fatigue behavior of Zr-based bulk-metallic glasses. Mater. Sci. Eng., A 494, 314 (2008).

    Article  Google Scholar 

  95. L.W. Tsay, Y.C. Liu, M.C. Young, and D.Y. Lin: Fatigue crack growth of AISI 304 stainless steel welds in air and hydrogen. Mater. Sci. Eng., A 374, 204 (2004).

    Article  Google Scholar 

  96. C. Sarrazin-Baudoux, J. Petit, and C. Amzallag: Near-threshold Fatigue Crack Propagation in Austenitic Stainless Steels (ECF14, Cracow, Poland, 2002).

    Google Scholar 

  97. R.O. Ritchie: Near-threshold fatigue crack propagation in ultra-high strength steel: Influence of load ratio and cyclic strength. J. Eng. Mater. Technol. 99, 195 (1977).

    Article  CAS  Google Scholar 

  98. T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, and A. Frehn: Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel. Mater. Sci. Eng., A 527, 2412 (2010).

    Article  Google Scholar 

  99. P. Ma, L. Qian, J. Meng, S. Liu, and F. Zhang: Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng., A 605, 160 (2014).

    Article  CAS  Google Scholar 

  100. B.L. Boyce and R.O. Ritchie: Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V. Eng. Fract. Mech. 68, 129 (2001).

    Article  Google Scholar 

  101. S.Y. Chen, W.D. Li, X. Xie, J. Brechtl, B.L. Chen, P.Z. Li, G.F. Zhao, F.Q. Yang, J.W. Qiao, K.A. Dahmen, and P.K. Liaw: Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys. J. Alloys Compd., 752, 464 (2018).

    Article  CAS  Google Scholar 

  102. W.D. Li, P.K. Liaw, and Y.F. Gao: Fracture resistance of high entropy alloys: A reviw. Intermetallics, 99, 69 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful for the support of the National Science Foundation (DMR-1611180) and the Department of Energy (DOE) Office of Fossil Energy, NETL (DE-FE0008855, DE-FE-0024054, and DE-FE-0011194), with Dr. G. Shiflet, Dr. D. Farkas, Dr. V. Cedro, Dr. R. Dunt, Dr. S. Markovich, and Dr. J. Mullen as program managers. P.K.L. very much appreciates the support from the U.S. Army Office Project (W911NF-13-1-0438) with the program managers, Dr. M.P. Bakas, Dr. S.N. Mathaudhu, and Dr. D.M. Stepp.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Li or Peter K. Liaw.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, G., Wu, S. et al. Creep, fatigue, and fracture behavior of high-entropy alloys. Journal of Materials Research 33, 3011–3034 (2018). https://doi.org/10.1557/jmr.2018.191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.191

Navigation