Skip to main content
Log in

Interdiffusion of Sn and Pb in liquid Pb-Sn alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Coefficients for the interdiffusion of Sn in Pb-rich alloys and Pb in Sn-rich alloys were established using 1.5-mm-diameter capillaries and the semi-infinite rod technique. Interdiffusion coefficients are presented for the entire concentration range from pure Pb to pure Sn, for temperatures from 668 to 1031 K. The concentration dependence of the interdiffusion coefficients was determined by establishing the concentration along the length of the capillaries and calculating the coefficients using a finite-difference technique. The interdiffusion of Sn in Pb, extrapolated to 0 at, pct Sn, is given by

$$D = 8.8 \times 10^{ - 8} \exp - (22,600/RT)m^2 /s$$

and that for Pb in Sn, extrapolated to 0 at. pct Pb, by

$$D = 2.4 \times 10^{ - 8} \exp - (19,300/RT)m^2 /s$$

The “average” value for the interdiffusion of Sn in Pb, for the concentration range from 0 to 74 at. pct Sn, is given by

$$D = 1.1 \times 10^{ - 7} \exp - (25,200/RT)m^2 /s$$

and the average value for the interdiffusion of Pb in Sn, for the concentration range from 0 to 26 at. pct Pb, is given by

$$D = 1.3 \times 10^{ - 8} \exp - (22,600/RT)m^2 /s$$

The values obtained for the coefficients agree reasonably well with previous results for the diffusion of Sn in Pb-rich alloys and are consistent with solvent self-diffusion coefficients for pure Pb and pure Sn. However, while the diffusion coefficients obtained from these Arrhenius equations are likely of the right order of magnitude, it is concluded that the results are affected by fluid flow in the capillaries, resulting in higher than actual activation energies. It is suggested that, for the capillary-reservoir technique, convective flow in the reservoir across the open end of the capillaries induces “lid-driven” flow in the upper portions of the capillaries, resulting in higher than actual diffusion coefficients, particularly for the Sn-rich alloys, since the Sn-rich end of the capillaries was open to the reservoir. Because of fluid motion induced in the capillaries, all of the results for solute and self-diffusion in Pb, both present and previous, are likely erroneous because they were obtained using the capillary-reservoir technique.

Some previous results for solvent self-diffusion in liquid Sn were obtained using either the thin disk or the semi-infinite rod technique and, since these results agree with results obtained in microgravity, it is concluded that the nonreservoir methods may provide a means of obtaining more accurate liquid diffusion data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitsuo Shimoji and Toshio Itami: Diffusion and Defect Data, F.H. Wohlbier, ed., 1986, vol. 43, pp. 1–344.

  2. J.B. Edwards, E.E. Hucke, and J.J. Martin: Metall. Rev., 1968, vol. 13, pp. 1–28.

    Google Scholar 

  3. ASM Handbook, 10th ed., vol. 3, Alloy Phase Diagrams, ASM International, Materials Park, OH, 1992, p. 2.235.

  4. Paul Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, p. 22.

    Google Scholar 

  5. Paul Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, p. 36.

    Google Scholar 

  6. F.J.A. Den Broeder: Scripta Metall., 1969, vol. 3, pp. 321–26.

    Article  Google Scholar 

  7. Paul Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, p. 34.

    Google Scholar 

  8. D.R. Poirier: Metall. Trans. A, 1988, vol. 19A, pp. 2349–54.

    CAS  Google Scholar 

  9. Michael Klassen: Master’s Thesis, University of Manitoba, Winnipeg, 1996.

    Google Scholar 

  10. Sridar K. Kailasam, Jeffery C. LaCombe, and Martin E. Glicksman: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2605–10.

    CAS  Google Scholar 

  11. Kichizo Niwa, Mitsuo Shimoji, Satoshi Kado, Yoshihiko Watanabe, and Toshio Yokokawa: Trans. TMS-AIME, 1957, vol. 209, pp. 96–101.

    Google Scholar 

  12. Morteza Mirshamsi: Ph.D. Thesis, University of Oklahoma, Norman, OK, 1963.

    Google Scholar 

  13. Morteza Mirshamsi, Andrew Cosgarea, Jr., and William R. Upthegrove: Trans. AIME, 1966, vol. 236, pp. 122–28.

    CAS  Google Scholar 

  14. Mei-Hsia Chang and Chin-Hsiang Cheng: Int. Comm. Heat Mass Transfer, 1999, vol. 26, pp. 829–38.

    Article  CAS  Google Scholar 

  15. S.J. Rothman and L.D. Hall: Trans. AIME, 1956, vol. 206, pp. 199–203.

    Google Scholar 

  16. Von H. Cordes and G. Döge: Z. Naturforschg., 1963, vol. 18, pp. 835–39.

    Google Scholar 

  17. J.R. Cahoon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 583–93.

    Article  Google Scholar 

  18. U. Södervall, H. Odelius, A. Lodding, G. Frohberg, K.H. Kraatz, and H. Wever: Springer Series in Chemical Physics, No. 44, 1986, pp. 41–44. Springer-Verlag, Berlin, New York. Proc. Int. Conf. on Secondary Ion Mass Spectrometry, SIMS 5, Washington, DC, September 30–October 4, 1985.

    Google Scholar 

  19. A. Bruson and M. Gerl: Phys. Rev., 1980, vol. 21, pp. 5447–54.

    Article  CAS  Google Scholar 

  20. G. Careri, A. Paoletti, and M. Vincentini: Nuovo Cimento, 1958, Ser. 10, vol. 10, pp. 1088–99.

    CAS  Google Scholar 

  21. D.H. Kurlat, M. Rosen, and G. Quintana: Z. Naturforsch., 1976, vol. 31a, p. 1024.

    CAS  Google Scholar 

  22. D.H. Kurlat, M. Rosen, and G. Quintana: Phys. Chem. Liq., 1977, vol. 6, pp. 127–36.

    CAS  Google Scholar 

  23. James P. Schaffer, Ashok Saxena, Stephen D. Antolovich, Thomas H. Sanders, Jr., and Steven B. Warner: The Science and Design of Engineering Materials, Richard D. Irwin, Inc., Chicago, IL, 1995, p. 802.

    Google Scholar 

  24. James P. Schaffer, Ashok Saxena, Stephen D. Antolovich, Thomas H. Sanders, Jr., and Steven B. Warner: The Science and Design of Engineering Materials, Richard D. Irwin, Inc., 1995, p. 798.

  25. Paul Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, p. 141.

    Google Scholar 

  26. Mitsuo Shimoji and Toshio Itami: In Diffusion and Defect Data, F.H. Wohlbier, ed., 1986, vol. 43, pp. 176–77.

  27. O.J. Kleppa: J. Phys. Chem., 1955, vol. 59, pp. 122–28.

    Google Scholar 

  28. G. Careri and A. Paoletti: Nuovo Cimento, 1955, Ser. 10, vol. 2, pp. 574–91.

    Article  CAS  Google Scholar 

  29. C.H. Ma and R.A. Swalin: J. Chem. Phys., 1962, vol. 36, pp. 3014–18.

    Article  CAS  Google Scholar 

  30. W. Lange, W. Pippel, and H. Opperman: Isotopen-Technol. 1962, vol. 2, p. 132.

    CAS  Google Scholar 

  31. K.G. Davis and P. Fryzuk: J. Appl. Phys., 1968, vol. 39, pp. 4848–49.

    Article  CAS  Google Scholar 

  32. Y.I. Khar’kov, A.L. Zvyagintsev, and G.I. Onopriyenko: Fiz. Met. Metalloved., 1971, vol. 31, pp. 220–21.

    CAS  Google Scholar 

  33. J.P. Foster and R.J. Reynik: Metall. Trans., 1973, vol. 4, pp. 207–16.

    CAS  Google Scholar 

  34. A. Bruson and M. Gerl: Phys. Rev. B, 1979, vol. 19, pp. 6123–29.

    Article  CAS  Google Scholar 

  35. J.P. Foster and R.J. Reynik: Rev. Sci. Instrum, 1968, vol. 39, pp. 1579–81.

    Article  CAS  Google Scholar 

  36. J.S. Anderson and K. Saddington: J. Chem. Soc., 1949, part 3, suppl. 2, pp. S381–S386.

  37. R.E. Hoffman: J. Chem. Phys., 1952, vol. 20, pp. 1567–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klassen, M., Cahoon, J.R. Interdiffusion of Sn and Pb in liquid Pb-Sn alloys. Metall Mater Trans A 31, 1343–1352 (2000). https://doi.org/10.1007/s11661-000-0253-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0253-5

Keywords

Navigation