Skip to main content
Log in

Hydrogen effects on an amorphous Fe-Si-B alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen absorption in and desorption from an amorphous Fe80B11Si9 alloy, hydrogen effects on the microstructure of this alloy, and the possible mechanism of hydrogen embrittlement (HE) in this alloy have been studied. Ribbons were electrochemically charged with hydrogen at room temperature. The interaction of hydrogen with structural defects and the characteristics of hydrogen desorption were studied by means of thermal desorption spectroscopy (TDS). The effects of hydrogen on the microstructure and thermal stability were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), electrical resistivity measurements, and differential scanning calorimetry (DSC). The phenomenon of HE was investigated using scanning electron microscopy (SEM) and various mechanical testing techniques. The absence of hydride-forming elements resulted in low hydrogen solubility and low desorption temperatures. Hydrogenation at room temperature is reported for the first time to lead to either local nanocrystallization of the amorphous phase or transformation of nanocrystalline phases such as Fe∼3.5B, originally present in the uncharged material, to a new nanocrystalline Fe23B6 phase. The susceptibility of this alloy to HE is explained in terms of high-pressure bubble formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Eliaz and D. Eliezer: Adv. Perf. Mater., 1999, vol. 6(1), pp. 5–31.

    Article  CAS  Google Scholar 

  2. N. Eliaz: Ph.D. Thesis, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 1999.

    Google Scholar 

  3. C.H. Bennett, D.E. Polk, and D. Turnbull: Acta Metall., 1971, vol. 19, pp. 1295–98.

    Article  CAS  Google Scholar 

  4. N. Eliaz, D. Fuks, and D. Eliezer: Acta Mater., 1999, vol. 47(10), pp. 2981–89.

    Article  CAS  Google Scholar 

  5. N. Eliaz, E. Moshe, S. Eliezer, and D. Eliezer: Metall. Mater. Trans. A., 2000, vol. 31A, pp. 1085–93.

    CAS  Google Scholar 

  6. U. Köster and U. Schünemann: in Rapidly Solidified Alloys, H.H. Liebermann, ed., Marcel Dekker, New York, NY, 1993, pp. 303–37.

    Google Scholar 

  7. N. Eliaz, D. Eliezer, E. Abramov, D. Zander, and U. Köster: J. Alloys Compounds, 2000, vol. 305(1–2), pp. 272–81.

    Article  CAS  Google Scholar 

  8. U. Köster, U. Herold, and H.-G. Hillenbrand: Scripta Metall., 1983, vol. 17, pp. 867–72.

    Article  Google Scholar 

  9. M.A.V. Devanathan, Z. Stachurski, and W. Beck: J. Electrochem. Soc., 1963, vol. 110(8), pp. 886–90.

    Article  CAS  Google Scholar 

  10. J.-J. Lin and T.-P. Perng: Metall. Mater. Trans. A, 1995, vol. A26, pp. 191–96.

    Google Scholar 

  11. M. Lazarova, T. Spassov, and S. Budurov: Int. J. Rapid Solidification, 1994, vol. 8(2), pp. 133–45.

    CAS  Google Scholar 

  12. R.M. Latanision, C.R. Compeau, and M. Kurkela: in Hydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R.F. Hehemann, eds., ASM, Metals Park, OH, 1984, pp. 297–313.

    Google Scholar 

  13. F. Spaepen and D. Turnbull: Scripta Metall., 1974, vol. 8(5), pp. 563–68.

    Article  CAS  Google Scholar 

  14. F. Spaepen: Acta Metall., 1977, vol. 25(4), pp. 407–15.

    Article  CAS  Google Scholar 

  15. M. Nagumo and T. Takahashi: Mater. Sci. Eng., 1976, vol. 23, pp. 257–59.

    Article  CAS  Google Scholar 

  16. S. Ashok, N.S. Stoloff, M.E. Glicksman, and T. Slavin: Scripta Metall., 1981, vol. 15, pp. 331–37.

    Article  CAS  Google Scholar 

  17. T.K.G. Namboodhiri, T.A. Ramesh, G. Singh, and S. Sehgal: Mater. Sci. Eng., 1983, vol. 61, pp. 23–29.

    Article  CAS  Google Scholar 

  18. H.W. Schroeder and U. Köster: J. Non-Cryst. Solids, 1983, vol. 56, pp. 213–18.

    Article  CAS  Google Scholar 

  19. J.-J. Lin and T.-P. Perng: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 197–202.

    CAS  Google Scholar 

  20. K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett., 1982, vol. 1 pp. 13–16.

    Article  CAS  Google Scholar 

  21. K. Niihara: J. Mater. Sci. Lett., 1983, vol. 2, pp. 221–23.

    Article  CAS  Google Scholar 

  22. U. Herold and U. Köster: Z. Metallkd., 1978, vol 69, pp. 326–32.

    CAS  Google Scholar 

  23. R. Schulz, M.L. Trudeau, D. Dussault, A. Van Neste, and L. Dignard-Bailey: Mater. Sci. Eng. A, 1994, vols. A179–A180, pp. 516–20.

    Google Scholar 

  24. P.G. Caceres and K. Habib: Z. Metallkd., 1996, vol. 87(4), pp. 300–04.

    CAS  Google Scholar 

  25. R.C. Bowman, Jr.: Mater. Sci. Forum, 1988, vol. 31, pp. 197–228.

    Article  CAS  Google Scholar 

  26. V. Vitek and T. Egami: Phys. Status Solidi B, 1987, vol. 144, pp. 145–56.

    CAS  Google Scholar 

  27. T. Egami: J. Non-Cryst. Solids, 1988, vol. 106(1–3), pp. 207–10.

    Article  CAS  Google Scholar 

  28. R.W. Lin and H.H. Johnson: J. Non-Cryst. Solids, 1982, vol. 51(1), pp. 45–56.

    Article  CAS  Google Scholar 

  29. D. Zander, H. Leptien, U. Köster, N. Eliaz, and D. Eliezer: J. Non-Cryst. Solids, 1999, vols. 250–52, pp. 893–97.

    Article  Google Scholar 

  30. E. Fromm and G. Hörz: Int. Met. Rev., 1980, vols. 5–6, pp. 269–311.

    Google Scholar 

  31. J.B. Han, D.W. Kweon and J.-Y. Lee, J. Non-Cryst. Solids, 1989, vol. 108, pp. 216–20.

    Article  CAS  Google Scholar 

  32. J.B. Condon and T. Schober: J. Nucl. Mater., 1993, vol. 207, pp. 1–24.

    Article  CAS  Google Scholar 

  33. Y. Sakamoto, K. Baba, W. Kubahashi, K. Takao, and S. Takayama: J. Non-Cryst. Solids, 1984, vols. 61–62, pp. 691–96.

    Article  Google Scholar 

  34. A.S. Tetelman and W.D. Robertson: Trans. TMS-AIME, 1962, vol. 224, pp. 775–83.

    CAS  Google Scholar 

  35. J.O’M. Bockris and A.K.N. Reddy: Modern Electrochemistry, [vol. 2,] Plenum Press, New York, NY, 1970, pp. 1328–44.

    Google Scholar 

  36. R.A. Oriani: Trans. Fusion Technol., 1994, vol. 26, pp. 235–66.

    CAS  Google Scholar 

  37. U. Stolz, U. Nagorny, and R. Kirchheim: Scripta Metall., 1984, vol. 18(4), pp. 347–52.

    Article  CAS  Google Scholar 

  38. B. Chelluri and R. Kirchheim: J. Non-Cryst. Solids, 1983, vol. 54(1–2), pp. 107–12.

    Article  CAS  Google Scholar 

  39. R. Fromageau, A. Magnouche and N. Gerard: Phys. Status Solidi A, 1985, vol. a91(1), pp. K75-K80.

    Article  Google Scholar 

  40. D. Menzel, A. Niklas, and U. Köster: Mater. Sci. Eng. A, 1991, vol. A133, pp. 312–15.

    CAS  Google Scholar 

  41. J. Garaguly, A. Lovas, Á, Cziráki, M. Reybold, J. Takács, and K. Wetzig: Mater. Sci. Eng. A, 1997, vols. A226–A28, pp. 938–42.

    Google Scholar 

  42. J. Piller and P. Haasen: Acta Metall., 1982, vol. 30(1), pp. 1–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliaz, N., Eliezer, D. Hydrogen effects on an amorphous Fe-Si-B alloy. Metall Mater Trans A 31, 2517–2526 (2000). https://doi.org/10.1007/s11661-000-0196-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0196-x

Keywords

Navigation