Skip to main content
Log in

Effects of the intensity and frequency of electromagnetic vibrations on the microstructural refinement of hypoeutectic Al-Si alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An experimental apparatus that uses a superconducting magnet and enables the simultaneous application of an alternating electric field with a frequency of up to 50 kHz and a magnetic field of up to 10 T was designed and assembled. Electromagnetic vibrations were induced in Al-7 wt pct Si alloy during solidification by simultaneous application of the two fields. The thorough investigation, which was carried out over wide ranges of intensity (an electromagnetic pressure range of 0 to 2.25×105 Pa) and frequency (0 to 50 kHz), clarified the effects of the two main parameters on the microstructural refinement brought about by electromagnetic vibrations. Low-intensity vibrations changed the highly columnar dendritic structure into one composed of large, equiaxed dendrites. As the intensity, and consequently, the magnetic pressure were increased, at about 0.93×105 Pa, fine isolated grains started to appear and dominated the structure as the pressure was increased further. At low frequencies, the structure was one with large, equiaxed dendrites, which disintegrated to form a fine and homogeneous structure as the frequency was increased. At about 1.5 kHz, the trend reversed and the structure gradually became a completely columnar dendritic one at frequencies higher than 10 kHz. Metallographic observations showed that the cavitation phenomenon has been a main factor behind the observed microstructural refinement. The effects of mechanical vibrations of the experimental apparatus were also investigated and found to have no contribution to the observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Asai, K. Yasui, and I. Muchi: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 754.

    CAS  Google Scholar 

  2. O. Lielausis, A. Mikelsons, E. Shcherbinin, and Y. Gelfgat: Metallurgical Applications of Magnetohydrodynamics, Proc. Symp. IUTAM, (The Metal Society, London), 1984, p. 234.

    Google Scholar 

  3. C. Vives: Mater. Sci. Eng., 1993, vol. A173, pp. 169–72.

    CAS  Google Scholar 

  4. C. Vives: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 457–64.

    Article  CAS  Google Scholar 

  5. O. Abramov: Ultrasound in Liquid and Solid Metals, CRC Press, Boca Raton, FL, 1994, pp. 1029–39.

    Google Scholar 

  6. K.S. Suslick: Science, 1990, vol. 247, p. 1068.

    Article  Google Scholar 

  7. K.S. Suslick: MRS Bull., 1995, Apr., pp. 29–34.

  8. A. Radjai, K. Miwa, and T. Nishio: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1477–84.

    CAS  Google Scholar 

  9. T. Leighton: The Acoustic Bubble, Academic Press Ltd., London, 1994, pp. 67–83.

    Google Scholar 

  10. T. Leighton: The Acoustic Bubble, Academic Press Ltd., London, 1994, pp. 341–408.

    Google Scholar 

  11. T. Leighton: The Acoustic Bubble, Academic Press Ltd., London, 1994, pp. 531–51.

    Google Scholar 

  12. L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii: Course of Theoretical Physics, vol. 8, Electrodynamics of Continuous Media, 2nd ed., Butterworth-Heinennan, Oxford, United Kingdom, 1998, pp. 208–10.

    Google Scholar 

  13. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth & Co. Ltd., London, 1976, p. 98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radjai, A., Miwa, K. Effects of the intensity and frequency of electromagnetic vibrations on the microstructural refinement of hypoeutectic Al-Si alloys. Metall Mater Trans A 31, 755–762 (2000). https://doi.org/10.1007/s11661-000-0017-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0017-2

Keywords

Navigation