Skip to main content

Advertisement

Log in

Synthesis of MoSi2-TiSi2 pseudobinary alloys by reactive sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

MoSi2-TiSi2 pseudobinary alloys are synthesized from mixtures of elemental powders of molybdenum, silicon, and titanium by reactive sintering under a pseudoisostatic pressure of 150 MPa. When the titanium content in the alloy increases from 0 to 33 at. pct, the density of the alloy decreases from approximately 6 to 4 g/cm3, while the relative density is more than 95 pct independent of the titanium content. Vickers hardness of the alloy is approximately 800 when the alloy consists of a monophase structure of α-MoSi2 or β-MoSi2. However, the hardness increases to approximately 950 when the alloy consists of a dual-phase structure of (α-MoSi2+β-MoSi2) or (β-MoSi2+γ-TiSi2). The oxidation resistance of the alloy at 773 K is approximately tripled when the titanium content increases from 0 to 1.7 at. pct, but the effect of the titanium content on the oxidation resistance becomes less remarkable as the titanium content increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Aikin, Jr.: Scripta Metall. Mater., 1992, vol. 26, pp. 1025–30.

    Article  CAS  Google Scholar 

  2. R.M. Aikin, Jr.: Mater. Sci. Eng., 1992, vol. A155, pp. 121–33.

    CAS  Google Scholar 

  3. A.K. Vasudevan and J.J. Petrovic: Mater. Sci. Eng., 1992, vol. A155, pp. 1–17.

    CAS  Google Scholar 

  4. R.M. Aikin, Jr.: Ceram. Eng. Sci. Proc., 1991, vol. 12, pp. 1643–55.

    Article  CAS  Google Scholar 

  5. D.R. Berztiss, R.R. Cerchiara, E.A. Gulbransen, F.S. Pettit, and G.H. Meier: Mater. Sci. Eng., 1992, vol. A155, pp. 165–81.

    CAS  Google Scholar 

  6. K. Kurokawa: Bull. Jpn. Inst. Met., 1993, vol. 32, pp. 668–75.

    CAS  Google Scholar 

  7. J. Chen, C. Li, Z. Fu, X. Tu, M. Sundberg, and R. Pompe: Mater. Sci. Eng., 1999, vol. A261, pp. 239–44.

    CAS  Google Scholar 

  8. K. Kurokawa, H. Houzumi, I. Saeki, and H. Takahashi: Mater. Sci. Eng., 1999, vol. A261, pp. 292–99.

    CAS  Google Scholar 

  9. K. Matsuura, T. Ohmi, M. Kudoh, T. Kakuhashi, and T. Hasegawa: J. Jpn. Inst. Light Met., 1997, vol. 47, pp. 446–51.

    Article  CAS  Google Scholar 

  10. L.S. Guzei: Ternary Alloys, G. Petzow and G. Effenberg, eds., VCH Verlagsgesellschaft, Weinheim, 1993, vol. 7, pp. 225–28.

    Google Scholar 

  11. W.J. Boettinger, J.H. Perepezko, and P.S. Frankwicz: Mater. Sci. Eng, 1992, vol. A155, pp. 33–44.

    CAS  Google Scholar 

  12. D.V. Ragone: Thermodynamics of Materials, T. Terao, translator, Maruzen-Wiley, Tokyo, 1996, vol. 1, pp. 152–57.

    Google Scholar 

  13. J.B. Holt and Z.A. Munir: J. Mater. Sci., 1986, vol. 21, pp. 251–59.

    Article  CAS  Google Scholar 

  14. S. Adachi, T. Wada, T. Mihara, Y. Miyamoto, M. Koizumi, and O. Yamada: J. Am. Ceram. Soc., 1989, vol. 72, pp. 805–09.

    Article  CAS  Google Scholar 

  15. O. Yamada, Y. Miyamoto, and M. Koizumi: J. Mater. Res., 1986, vol. 1, pp. 275–79.

    CAS  Google Scholar 

  16. D.E. Alman and N.S. Stoloff: Scripta Metall. Mater., 1993, vol. 28, pp. 1525–30.

    Article  CAS  Google Scholar 

  17. B.L. Ferguson: Int. J. Powder Metall. Powder Technol., 1985, vol. 21, pp. 201–07.

    CAS  Google Scholar 

  18. H. Shingu and K. Ishihara: J. Jpn. Powder Powder Metall., 1990, vol. 37, pp. 670–73.

    CAS  Google Scholar 

  19. K. Matsuura, T. Kitamura, M. Kudoh, Y. Itoh, and T. Ohmi: J. Jpn. Inst. Light Met., 1996, vol. 46, pp. 383–88.

    Article  CAS  Google Scholar 

  20. K. Matsuura, T. Kitamura, M. Kudoh, Y. Itoh, and T. Ohmi: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 87–92.

    CAS  Google Scholar 

  21. K. Matsuura, K. Ohsasa, N. Sueoka, and M. Kudoh: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 310–15.

    CAS  Google Scholar 

  22. C. Nishimura and C.T. Liu: Acta Metall. Mater., 1993, vol. 41, pp. 113–20.

    Article  CAS  Google Scholar 

  23. Data Book of Metals, 3rd ed., Japan Institute of Metals, Maruzen, Tokyo, 1993, pp. 10–19.

  24. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1995, vol. 10, pp. 12628–12631.

    Google Scholar 

  25. Data Base MALT, Japanese Institute of Thermal Measurement, Science and Technology Co., Tokyo, 1985.

  26. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 261–68.

    Article  Google Scholar 

  27. P. Perrot: in Ternary Alloys, G. Petzow and G. Effenberg, eds., VCH, Verlagsgesellschaft, Weinheim, 1993, vol. 7, pp. 283–90.

    Google Scholar 

  28. E. Lugscheider, U. Westermann, J. Wonka, H. Meinhardt, H. Neisius, and R. Arnold: Intermetallic Compounds—Structure and Mechanical Properties (JIMIS-6), 1991, pp. 621–29.

  29. R. Rosenkranz, G. Frommeyer, and W. Smarsly: Mater. Sci. Eng., 1992, vol. A152, pp. 288–93.

    CAS  Google Scholar 

  30. Y. Umakoshi, T. Nakano, K. Kishimoto, D. Furuta, K. Hagihara, and M. Azuma: Mater. Sci. Eng., 1999, vol. A261, pp. 113–21.

    CAS  Google Scholar 

  31. J. Cook, A. Khan, E. Lee, and R. Mahapatra: Mater. Sci. Eng., 1992, vol. A155, pp. 183–98.

    CAS  Google Scholar 

  32. T. Maruyama and K. Yanagihara: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 828–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuura, K., Ohmi, T., Kudoh, M. et al. Synthesis of MoSi2-TiSi2 pseudobinary alloys by reactive sintering. Metall Mater Trans A 31, 747–753 (2000). https://doi.org/10.1007/s11661-000-0016-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0016-3

Keywords

Navigation