Skip to main content

Advertisement

Log in

Lingbao Huxin Pill Alleviates Apoptosis and Inflammation at Infarct Border Zone through SIRT1-Mediated FOXO1 and NF- κ B Pathways in Rat Model of Acute Myocardial Infarction

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate whether Lingbao Huxin Pill (LBHX) protects against acute myocardial infarction (AMI) at the infarct border zone (IBZ) of myocardial tissue by regulating apoptosis and inflammation through the sirtuin 1 (SIRT1)-mediated forkhead box protein O1 (FOXO1) and nuclear factor-κ B (NF-κ B) signaling pathways.

Methods

Six-week-old Wistar rats with normal diet were randomized into the sham, the model, Betaloc (0.9 mg/kg daily), LBHX-L (0.45 mg/kg daily), LBHX-M (0.9 mg/kg daily), LBHX-H (1.8 mg/kg daily), and LBHX+EX527 (0.9 mg/kg daily) groups according to the method of random number table, 13 in each group. In this study, left anterior descending coronary artery (LADCA) ligation was performed to induce an AMI model in rats. The myocardial infarction area was examined using a 2,3,5-triphenyltetrazolium chloride solution staining assay. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was conducted to assess cardiomyocyte apoptosis in the IBZ. The histopathology of myocardial tissue at the IBZ was assessed with Heidenhain, Masson and hematoxylineosin (HE) staining assays. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1 β, and intercellular adhesion molecule-1 were measured using enzyme-linked immunosorbent assays (ELISAs). The mRNA expressions of SIRT1 and FOXO1 were detected by real-time qPCR (RT-qPCR). The protein expressions of SIRT1, FOXO1, SOD2, BAX and NF- κ B p65 were detected by Western blot analysis.

Results

The ligation of the LADCA successfully induced an AMI model. The LBHX pretreatment reduced the infarct size in the AMI rats (P<0.01). The TUNEL assay revealed that LBHX inhibited cardiomyocyte apoptosis at the IBZ. Further, the histological examination showed that the LBHX pretreatment decreased the ischemic area of myocardial tissue (P<0.05), myocardial interstitial collagen deposition (P<0.05) and inflammation at the IBZ. The ELISA results indicated that LBHX decreased the serum levels of inflammatory cytokines in the AMI rats (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that the LBHX pretreatment upregulated the protein levels of SIRT1, FOXO1 and SOD2 (P<0.05) and downregulated NF- κ B p65 and BAX expressions (P<0.05). The RT-qPCR results showed that LBHX increased the SIRT1 mRNA and FOXO1 mRNA levels (P<0.05). These protective effects, including inhibiting apoptosis and alleviating inflammation in the IBZ, were partially abolished by EX527, an inhibitor of SIRT1.

Conclusion

LBHX could protect against AMI by suppressing apoptosis and inflammation in AMI rats and the SIRT1-mediated FOXO1 and NF- κ B signaling pathways were involved in the cardioprotection effect of LBHX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowbar A, Gitto M, Howard J, Francis D, Al-Lamee R. Mortality from ischemic heart disease. Circ Cardiovasc Qual Outcomes 2019;12:e005375.

    Article  Google Scholar 

  2. Kung G, Vaseghi M, Gahm J, Shevtsov J, Garfinkel A, Shivkumar K, et al. Microstructural infarct border zone remodeling in the post-infarct swine heart measured by diffusion tensor MRI. Front Physiol 2018;9:826.

    Article  Google Scholar 

  3. Teringova E, Tousek P. Apoptosis in ischemic heart disease. J Transl Med 2017;15:87.

    Article  Google Scholar 

  4. Huang S, Frangogiannis N. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 2018;175:1377–1400.

    Article  CAS  Google Scholar 

  5. Shimkunas R, Makwana O, Spaulding K, Bazargan M, Khazalpour M, Takaba K, et al. Myofilament dysfunction contributes to impaired myocardial contraction in the infarct border zone. Am J Physiol Heart Circ Physiol 2014;307:H1150–H1158.

    Article  CAS  Google Scholar 

  6. Bhola P, Letai A. Mitochondria-judges and executioners of cell death sentences. Mol cell 2016;61:695–704.

    Article  CAS  Google Scholar 

  7. Han F, Chen Q, Su J, Zheng A, Chen K, Sun S, et al. MicroRNA-124 regulates cardiomyocyte apoptosis and myocardial infarction through targeting Dhcr24. J Mol Cell Cardiol 2019;132:178–188.

    Article  CAS  Google Scholar 

  8. Hsu Y, Hsu S, Hsu C, Chen Y, Chang Y, Sadoshima J, et al. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol 2017;228:543–552.

    Article  Google Scholar 

  9. Ren B, Zhang Y, Liu S, Cheng X, Yang X, Cui X, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-FoxO1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020;24:12355–12367.

    Article  CAS  Google Scholar 

  10. Wang K, Zhang W, Liu J, Cui Y, Cui J. Piceatannol protects against cerebral ischemia/reperfusion induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway. Mol Med Report 2020;22:5399–5411.

    Article  CAS  Google Scholar 

  11. Ong S, Hernández-Reséndiz S, Crespo-Avilan G, Mukhametshina R, Kwek X, Cabrera-Fuentes H, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 2018;186:73–87.

    Article  CAS  Google Scholar 

  12. Wang R, Neuenschwander F, Nascimento B. Inflammation post-acute myocardial infarction: “doctor or monster”. Arq Bras Cardiol 2020;115:1112–1113.

    PubMed  PubMed Central  Google Scholar 

  13. Li D, Wang X, Huang Q, Li S, Zhou Y, Li Z. Cardioprotection of CAPE-oNO against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κ B pathway in vivo and in vitro. Redox Biol 2018;15:62–73.

    Article  CAS  Google Scholar 

  14. Zhang F, Feng J, Zhang J, Kang X, Qian D. Quercetin modulates AMPK/SIRT1/NF-κ B signaling to inhibit inflammatory/oxidative stress responses in diabetic high fat diet-induced atherosclerosis in the rat carotid artery. Exp Ther Med 2020;20:280.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Chen R, Li J, Chen J, Li W, Niu X, et al. Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting inflammation and the NLRP3 inflammasome: the role of the SIRT1/NF- κ B pathway. Int Immunopharmacol 2020;89:107086.

    Article  CAS  Google Scholar 

  16. Tan Y, Shi DZ, Chai H, Ma XJ. The mechanism of Lingbao Huxin Pills in the treatment of acute myocardial infarction based on network pharmacology. Chin J Integr Med Cardio-/Cerebrovas Dis (Chin) 2021;19:1057–1069.

    Google Scholar 

  17. Ma S, Ma J, Zhou Y, Guo L, Bai J, Zhang M. Tongguan Capsule derived-herb ameliorates remodeling at infarcted border zone and reduces ventricular arrhythmias in rats after myocardial infarction. Biomed Pharmacother 2019;120:109514.

    Article  CAS  Google Scholar 

  18. Bardales R, Hailey L, Xie S, Schaefer R, Hsu S. In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol 1996;149:821–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996;28:2005–2016.

    Article  CAS  Google Scholar 

  20. Orogo A, Gustafsson Å. Cell death in the myocardium: my heart won’t go on. IUBMB Life 2013;65:651–656.

    Article  CAS  Google Scholar 

  21. Hofbauer T, Ondracek A, Mangold A, Scherz T, Nechvile J, Seidl V, et al. Neutrophil extracellular traps induce MCP-1 at the culprit site in ST-segment elevation myocardial infarction. Front Cell Dev Biol 2020;8:564169.

    Article  Google Scholar 

  22. Huang P, Wang L, Li Q, Xu J, Xu J, Xiong Y, et al. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther 2019;10:300.

    Article  Google Scholar 

  23. Liao Z, Li D, Chen Y, Li Y, Huang R, Zhu K, et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. J Cell Mol Med 2019;23:8328–8342.

    Article  CAS  Google Scholar 

  24. Ben Salem I, Boussabbeh M, Pires Da Silva J, Guilbert A, Bacha H, Abid-Essefi S, et al. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway. Toxicol Appl Pharmacol 2017;314:82–90.

    Article  CAS  Google Scholar 

  25. Puthanveetil P, Wan A, Rodrigues B. FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res 2013;97:393–403.

    Article  CAS  Google Scholar 

  26. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 2004;14:408–412.

    Article  CAS  Google Scholar 

  27. Ponugoti B, Dong G, Graves D. Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res 2012;2012:939751.

    Article  Google Scholar 

  28. Yan X, Yu A, Zheng H, Wang S, He Y, Wang L. OCalycosin-7—glucoside attenuates OGD/R-induced damage by preventing oxidative stress and neuronal apoptosis via the SIRT1/FOXO1/PGC-1 pathway in HT22 cells. Neural Plast 2019;2019:8798069.

    Article  Google Scholar 

  29. Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1. Pharmacol Res 2013;67:60–67.

    Article  CAS  Google Scholar 

  30. Chen Lf, Fischle W, Verdin E, Greene W. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001;293:1653–1657.

    Article  CAS  Google Scholar 

  31. Jung Y, Lee J, Lee A, Kang K, Lee S, Park S, et al. SIRT1 overexpression decreases cisplatin-induced acetylation of NF- κ B p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun 2012;419:206–210.

    Article  CAS  Google Scholar 

  32. Baatar D, Siddiqi M, Im W, Ul Khaliq N, Hwang S. Anti-inflammatory effect of ginsenoside Rh-Mix on lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Med Food 2018;21:951–960.

    Article  CAS  Google Scholar 

  33. Lin B, Zhao H, Li L, Zhang Z, Jiang N, Yang X, et al. Sirt1 improves heart failure through modulating the NF- κ B p65/microRNA-155/BNDF signaling cascade. Aging 2020;13:14482–14498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Tan Y performed the experiment, analyzed the data and drafted the manuscript. Chen L revised the paper. Bie YL, Zhao YH, Song L, Miao LN, Yu YQ, Chai H were conducted the experiment. Ma XJ and Shi DZ were the group leader offering supervision and revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-juan Ma.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supported by the National Natural Science Foundation of China (No. 81774141 and No. 82074418)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Bie, Yl., Chen, L. et al. Lingbao Huxin Pill Alleviates Apoptosis and Inflammation at Infarct Border Zone through SIRT1-Mediated FOXO1 and NF- κ B Pathways in Rat Model of Acute Myocardial Infarction. Chin. J. Integr. Med. 28, 330–338 (2022). https://doi.org/10.1007/s11655-021-2881-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-021-2881-0

Keywords

Navigation