Skip to main content
Log in

Osmoregulation mechanism of drought stress and genetic engineering strategies for improving drought resistance in plants

  • Published:
Forestry Studies in China

Abstract

Drought, one of the main adverse environmental factors, obviously affected plant growth and development. Many adaptive strategies have been developed in plants for coping with drought or water stress, among which osmoregulation is one of the important factors of plant drought tolerance. Many substances play important roles in plant osmoregulation for drought resistance, including proline, glycine betaine, Lea proteins and soluble sugars such as levan, trehalose, sucrose, etc. The osmoregulation mechanism and the genetic engineering of plant drought-tolerance are reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abraham E, Rigo G, Szekely Get al. 2003. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol. 51 (3): 363–72

    Article  PubMed  CAS  Google Scholar 

  • Bianchi G, Gamba A, Murelli Cet al. 1991. Novel carbohydrate metabolism in the resurrection plant-Craterostigma plantagineum. Plant Journal. 1: 355–359

    Google Scholar 

  • Bray E A. 1993. Molecular responses to water deficit. Plant Physiol. 103: 1 035–1 040

    CAS  Google Scholar 

  • Carpenter J F, Crowe L M, Arakawa Tet al. 1990 Comparison of solute-induced protein stabibilization in aqueous solition and in the frozen and dried states. Journal of Dairy Science. 73: 3 627–3 636

    Article  CAS  Google Scholar 

  • Curry J. 1993. Unusual sequence of group 3 LEA(II) mRNA inducible by dehydration stress in wheat. Plant Mol Biol. 21: 907–912

    Article  PubMed  CAS  Google Scholar 

  • Dejardin A, Sokolov L N, Kleczkowski L A. 1999. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochemical Journal. 344: 503–509

    Article  PubMed  CAS  Google Scholar 

  • Dure L III, Crouch M, Harada Jet al. 1989. Commn amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Bio. 12: 475–486

    Article  CAS  Google Scholar 

  • Franz G. 1989. Molecular and genetic analysis of an embryonic, DC8 from Daucus carota L. Mol Gen Genet. 218: 143–151

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Reimholz R, Deiting Uet al. 1999. Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant Journal. 19: 119–129

    Article  PubMed  CAS  Google Scholar 

  • Ginzberg I, Stein H, Kapulnik Yet al. 1998. Isolation and characterization of two different cDNAs of delta 1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol. 38 (5): 755–764

    Article  PubMed  CAS  Google Scholar 

  • Giordani T, Natali L, D’Ercole Aet al. 1999. Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.). Plant Mol Biol. 39 (4): 739–748

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom K, Mantyla E, Welin Bet al. 1996. Drought tolerance in tobacco. Nature. 379: 683–684

    Article  Google Scholar 

  • Igarashi Y, Yoshiba Y, Sanada Yet al. 1997. Characterization of the gene for △-1-pyrroline-5- carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Molecular Biology. 33 (5): 857–865

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Chandler J, Gallagher Let al. 1997, Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugar interconversions associated with dehydration in the resurrection plant Craterostigma plantagineum Hochst. Plant Physiology. 115: 113–121

    Article  PubMed  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao G Het al. 1995. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1 387–1 394

    CAS  Google Scholar 

  • Kleines M, Elster R C, Rodrigo M Jet al. 1999. Isolation and expression analysis of two stress-responsive sucrose synthase genes from the Craterostigma plantagineum (Hochst.). Planta. 209: 13–24

    Article  PubMed  CAS  Google Scholar 

  • Li Q L, Gao X R, Yu X Het al. 2003. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett. 25 (17): 1 431–1 436

    Article  CAS  Google Scholar 

  • Liang Z, Ma D, Tang Let al. 1997. Expression of the spinach betaine aldehydrogenase (BADH) gene in transgenic tobacco plants (in Chinese). Chinese Journal of Biotechnology. 13 (3): 236–240.

    CAS  Google Scholar 

  • Lisse T, Bartels D, Kalbitzer H Ret al. 1996. The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem. 377 (9): 555–561

    PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Yet al. 1998. Two transcription factors DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10: 1 391–1 406

    CAS  Google Scholar 

  • McCue K F, Hanson A D. 1992. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Molecular Biology. 18 (1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Meng G, Futterer K. 2003. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol. 10 (11): 935–941

    Article  PubMed  CAS  Google Scholar 

  • Meng Y L, Wang Y M, Zhang Bet al. 2001. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res. 11 (3): 187–193

    Article  PubMed  CAS  Google Scholar 

  • Morris C F. 1991. Molecular cloning and expression of abscisic acid ressponsive genes in embryos of dominant wheat seeds. Plant Physiol. 995: 814–821

    Article  Google Scholar 

  • Natali L, Giordani T, Cavallini A. 2003. Sequence variability of a dehydrin gene within Helianthus annuus. Theor Appl Genet. 106 (5): 811–818

    PubMed  CAS  Google Scholar 

  • Pelah D, Wang W, Altman Aet al. 1997. Differential accumulation of water-stress related protein, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum. 99: 153–159

    Article  CAS  Google Scholar 

  • Pilon-Smits E A H, Ebskamp M J M, Paul M Jet al. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107: 125–130

    PubMed  CAS  Google Scholar 

  • Pilon-Smits E A H, Terry N, Sears Tobin K Het al. 1999. Enhanced drought resistance fructan-accumulating tobacco under drought stress. Plant Physiology and Biochemistry. 37: 313–317

    Article  CAS  Google Scholar 

  • Pnueli L, Hallak-Herr E, Rozenberg Met al. 2002. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant Journal. 31 (3): 319–330

    Article  PubMed  CAS  Google Scholar 

  • Raynal M, Guilleminot J, Gueguen Cet al. 1999. Structure, organization and expression of two closely related novel LEA (late-embryogenesis-abundant) genes in Arabidopsis thaliana. Plant Mol Biol. 40 (1): 153–165

    Article  PubMed  CAS  Google Scholar 

  • Reddy A R, Ramakrishna W, Sekhar A Cet al. 2002. Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. subsp. indica cv. ‘Nagina 22’). Genome. 45 (1): 204–211

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Morency M J, Drevet Cet al. 2000. Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol. 43 (1): 1–10

    Article  PubMed  CAS  Google Scholar 

  • Russell B L, Rathinasabapathi B, Hanson A D. 1998. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol. 116 (2): 859–865

    Article  PubMed  CAS  Google Scholar 

  • Shen Q. 1993. Hormone response complex of a novel abscisic acid and cycloheximide inducible barley gene Biol Chem. 268: 23 652–23 660

    CAS  Google Scholar 

  • Shen Y G, Du B X, Zhang J Set al. 2001. Cloning and characterization of CMO gene from Atriplex hortensis (in Chinese). Chinese Journal of Biotechnology. 17 (1): 1–6

    PubMed  CAS  Google Scholar 

  • Shen Y G, Du B X, Zhang W Ket al. 2002. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet. 105 (6–7): 815–821

    Article  PubMed  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma D Pet al. 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell. 14 (11): 2 837–2 847

    Article  CAS  Google Scholar 

  • Stacy R A P, Espelund M, Saeboe-Larssen Set al. 1995. Evolution of the Group 1 late embryogenesis abundant (LEA) genes: analysis of the LEA B19 gene family in barley. Plant Mol Biol. 28: 1 039–1 054

    Article  CAS  Google Scholar 

  • Strizhov N, Abraham E, Okresz Let al. 1997. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant Journal. 12 (3): 557–569

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang Bet al. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249–257

    PubMed  CAS  Google Scholar 

  • Yin X, Zhao Y, Luo Det al. 2002. Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim Biophys Acta. 27: 1 577 (3): 452–426

    Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima Ket al. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38 (10): 1 095–1 102

    CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Yamaguchi-shinozaki Ket al. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiology. 38: 1 095–1 102

    CAS  Google Scholar 

  • Zhao H W, Chen Y J, Hu Y Let al. 2000. Construction of a trehalose-6-phosphate synthase gene drive by drought-responsive promoter and expression of drought-resistance in transgenic tobacco. Acta Batanica Sinica. 42 (6): 616–619

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Xiaoyang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Chen, X., Li, W. et al. Osmoregulation mechanism of drought stress and genetic engineering strategies for improving drought resistance in plants. For. Stud. China 6, 56–62 (2004). https://doi.org/10.1007/s11632-004-0021-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-004-0021-5

Key words

Navigation