Skip to main content
Log in

High pressure equation of state for molten CaCO3 from first principles simulations

  • Original Article
  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Carbonate melts are important active metasomatic agents and efficient transport agents; their thermodynamic properties at high temperatures and pressures are therefore of considerable interest for various geochemical applications. However, due to the extreme challenges in relevant experiments, current knowledge of even the density of carbonate melts is limited. In this study, we provide high quality volumetric data of CaCO3-melt from first principles at high temperatures and pressures (up to 3,500 K and 60 GPa). The accuracy of these data is demonstrated through comprehensive comparison with available experimental data and a thorough discussion of the predictability of the re-scaling method proposed in this study. Based on the simulations, an equation of state has been established that is critical to relevant highly disputed questions such as the decomposition and solidification boundaries of CaCO3 melts, the latter of which is briefly discussed in this study with a newly derived ab initio melting curve to high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Bobrovsky SV, Gogolev VM, Zamyshlyaev BV, Lozhkina VP, Rasskazov VV (1976) The study of thermal decomposition influence on the spallation velocity for strong shock waves in solids. Fiz Tech Probl Razrab Polezn Iskop 3:49–57

    Google Scholar 

  • Church AA, Jones AP (1995) Silicate–carbonate immiscibility at Oldoinyo-Lengai. J Petrol 36:869–889

    Article  Google Scholar 

  • Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Article  Google Scholar 

  • Flyvbjerg H, Petersen HG (1989) Error-estimates on averages of correlated data. J Chem Phys 91:461–466

    Article  Google Scholar 

  • Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365

    Article  Google Scholar 

  • Genge MJ, Price GD, Jones AP (1995) Molecular-dynamics simulations of CaCO3 melts to mantle pressures and temperatures—implications for carbonatite magmas. Earth Planet Sci Lett 131:225–238

    Article  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Article  Google Scholar 

  • Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46:1645–1659

    Article  Google Scholar 

  • Huang W-L, Wyllie PJ (1976) Melting relationships in the systems CaO–CO2 and MgO–CO2 to 33 kilobars. Geochim Cosmochim Acta 40:129–132

    Article  Google Scholar 

  • Irving AJ, Wyllie PJ (1973) Melting relationships in CaO–CO2 and MgO–CO2 to 36 kilobars with comments on CO2 in the mantle. Earth Planet Sci Lett 20:220–225

    Article  Google Scholar 

  • Ivanov BA, Deutsch A (2002) The phase diagram of CaCO(3) in relation to shock compression and decomposition. Phys Earth Planet Inter 129:131–143

    Article  Google Scholar 

  • Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. Carbon Earth 75:289–322

    Google Scholar 

  • Kerley GI (1989) Equations of state for calcite minerals. I. Theoretical model for dry calcium carbonate. High Press Res 2:29–47

    Article  Google Scholar 

  • Klement W, Cohen LH (1975) Solid–solid and solid–liquid transitions in K2CO3, Na2CO3 and Li2CO3—investigations to greater than −5 kbar by differential thermal-analysis—thermodynamics and structural correlations. Ber Bunsenges Phys Chem 79:327–334

    Article  Google Scholar 

  • Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  • Litvin Y, Spivak A, Solopova N, Dubrovinsky L (2014) On origin of lower-mantle diamonds and their primary inclusions. Phys Earth Planet Inter 228:176–185

    Article  Google Scholar 

  • Liu Q, Lange RA (2003) New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component. Contrib Mineral Petrol 146:370–381

    Article  Google Scholar 

  • Liu Q, Tenner TJ, Lange RA (2007) Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa. Contrib Mineral Petrol 153:55–66

    Article  Google Scholar 

  • Martinez I, Deutsch A, Scharer U, Ildefonse P, Guyot F, Agrinier P (1995) Shock recovery experiments on dolomite and thermodynamical calculations of impact-induced decarbonation. J Geophys Res Solid Earth 100:15465–15476

    Article  Google Scholar 

  • Merlini M, Hanfland M, Crichton WA (2012) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. Earth Planet Sci Lett 333:265–271

    Article  Google Scholar 

  • Mermin ND (1965) Thermal properties of inhomogeneous electron gas. Phys Rev 137:1441

    Article  Google Scholar 

  • Ni HW, Keppler H (2013) Carbon in silicate melts. Rev Mineral Geochem 75:251–287

  • Nosé S (1984) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

  • O’Keefe JD, Ahrens TJ (1989) Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338:247–249

    Article  Google Scholar 

  • Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103

    Article  Google Scholar 

  • Oganov AR, Ono S, Ma YM, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47

    Article  Google Scholar 

  • Oganov AR, Hemley RJ, Hazen RM, Jones AP (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. Carbon Earth 75:47–77

    Google Scholar 

  • Ono S (2008) Experimental constraints on the temperature profile in the lower mantle. Phys Earth Planet Inter 170:267–273

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92:1246–1249

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280

    Article  Google Scholar 

  • Rigden SM, Ahrens TJ, Stolper EM (1989) High-pressure equation of state of molten anorthite and diopside. J Geophys Res Solid Earth 94:9508–9522

    Article  Google Scholar 

  • Spivak AV, Dubrovinskii LS, Litvin YA (2011) Congruent melting of calcium carbonate in a static experiment at 3500 K and 10–22 GPa: its role in the genesis of ultradeep diamonds. Dokl Earth Sci 439:1171–1174

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002

    Google Scholar 

  • Suzuki A, Ohtani E, Kato T (1998) Density and thermal expansion of a peridotite melt at high pressure. Phys Earth Planet Inter 107:53–61

    Article  Google Scholar 

  • Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl(2)-type SiO(2) at high pressures. Phys Rev B 78:134106

    Article  Google Scholar 

  • van de Walle A, Ceder G (1999) Correcting overbinding in local-density-approximation calculations. Phys Rev B 59:14992–15001

    Article  Google Scholar 

  • Wang Y, Wang JJ, Wang WY, Mei ZG, Shang SL, Chen LQ, Liu ZK (2010) A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J Phys Condens Matter 22:202201

    Article  Google Scholar 

  • Williams Q, Knittle E (2003) Structural complexity in carbonatite liquid at high pressures. Geophys Res Lett 30:1022. doi:10.1029/2001GL013876

  • Yang XM, Yang XY, Zheng YF, Le Bas M (2003) A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Mineral Petrol 78:93–110

    Article  Google Scholar 

  • Zhang ZG, Duan ZH (2005) Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Phys Earth Planet Inter 149:335–354

    Article  Google Scholar 

  • Zhang ZG, Stixrude L, Brodholt J (2013) Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth. Earth Planet Sci Lett 379:1–12

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the funds from the key programs (#90914010 and #41020134003) granted by National Natural Science Foundation of China. All the simulations were carried out on the computational facilities in the Computer Simulation Lab of IGGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, Z. High pressure equation of state for molten CaCO3 from first principles simulations. Chin. J. Geochem. 34, 13–20 (2015). https://doi.org/10.1007/s11631-015-0036-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-015-0036-8

Keywords

Navigation