Skip to main content

Advertisement

Log in

Melting relations in the system FeCO3–MgCO3 and thermodynamic modelling of Fe–Mg carbonate melts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

To constrain the thermodynamics and melting relations of the siderite–magnesite (FeCO3–MgCO3) system, 27 piston cylinder experiments were conducted at 3.5 GPa and 1170–1575 °C. Fe-rich compositions were also investigated with 13 multi-anvil experiments at 10, 13.6 and 20 GPa, 1500–1890 °C. At 3.5 GPa, the solid solution siderite–magnesite coexists with melt over a compositional range of X Mg (=Mg/(Mg + Fetot)) = 0.38–1.0, while at ≥10 GPa solid solution appears to be complete. At 3.5 GPa, the system is pseudo-binary because of the limited stability of siderite or liquid FeCO3, Fe-rich carbonates decomposing at subsolidus conditions to magnetite–magnesioferrite solid solution, graphite and CO2. Similar reactions also occur with liquid FeCO3 resulting in melt species with ferric iron components, but the decomposition of the liquid decreases in importance with pressure. At 3.5 GPa, the metastable melting temperature of pure siderite is located at 1264 °C, whereas pure magnesite melts at 1629 °C. The melting loop is non-ideal on the Fe side where the dissociation reaction resulting in Fe3+ in the melt depresses melting temperatures and causes a minimum. Over the pressure range of 3.5–20 GPa, this minimum is 20–35 °C lower than the (metastable) siderite melting temperature. By merging all present and previous experimental data, standard state (298.15 K, 1 bar) thermodynamic properties of the magnesite melt (MgCO3L) end member are calculated and the properties of (Fe,Mg)CO3 melt fit by a regular solution model with an interaction parameter of −7600 J/mol. The solution model reproduces the asymmetric melting loop and predicts the thermal minimum at 1240 °C near the siderite side at X Mg = 0.2 (3.5 GPa). The solution model is applicable to pressures reaching to the bottom of the upper mantle and allows calculation of phase relations in the FeO–MgO–O2–C system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. with respect to magnetite + graphite + CO2.

References

  • Beukes NJ, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the archean-paleoproterozoic boundary. Band Iron Form Relat High Grade Iron Ore 15:5–47

    Google Scholar 

  • Biellmann C, Gillet P, Guyot F, Peyronneau J, Reynard B (1993) Experimental-evidence for carbonate stability in the earths lower mantle. Earth Planet Sci Lett 118:31–41

    Article  Google Scholar 

  • Boulard E, Menguy N, Auzende AL, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP, Guyot F, Fiquet G (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 117:B02208

    Article  Google Scholar 

  • Brearley AJ, Rubie DC (1990) Effects of H2O on the disequilibrium breakdown of muscovite + quartz. J Petrol 31:925–956

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV (2009) Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos 112:249–259

    Article  Google Scholar 

  • Buckley HA, Woolley AR (1990) Carbonates of the magnesite siderite series from 4 carbonatite complexes. Miner Mag 54:413–418

    Article  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst. doi:10.1029/2009GC002540

    Google Scholar 

  • Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11:379–388

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Dellas N (2005) The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Miner Petrol 149:288–305

    Article  Google Scholar 

  • Davidson PM (1994) Ternary iron, magnesium, calcium carbonates—a thermodynamic model for dolomite as an ordered derivative of calcite-structure solutions. Am Miner 79:332–339

    Google Scholar 

  • Dobson DP, Brodholt JP (2005) Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature 434:371–374

    Article  Google Scholar 

  • Eiler JM, Valley JW, Graham CM, Fournelle J (2002) Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis. Geochim Cosmochim Acta 66:1285–1303

    Article  Google Scholar 

  • Falloon TJ, Green DH (1989) The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett 94:364–370

    Article  Google Scholar 

  • Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Miner 87:1261–1265

    Article  Google Scholar 

  • Franzolin E, Schmidt MW, Poli S (2011) Ternary Ca–Fe–Mg carbonates: subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder. Contrib Miner Petrol 161:213–227

    Article  Google Scholar 

  • French BM (1971) Stability relations of siderite (FeCO3) in system Fe–C–O. Am J Sci 271:37–78

    Article  Google Scholar 

  • Ghosh S, Ohtani E, Litasov KD, Terasaki H (2009) Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol 262:17–28

    Article  Google Scholar 

  • Goldsmith JR, Graf DL, Witters J, Northrop DA (1962) Studies in the system CaCO3–MgCO3–FeCO3. 1. Phase relations. 2. A method for major-element spectrochemical analysis. 3. Compositions of some ferroan dolomites. J Geol 70:659–688

    Article  Google Scholar 

  • Grassi D, Schmidt MW (2011) Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism. Contrib Miner Petrol 162:169–191

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Miner Petrol 145:492–501

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and join CaCO3–MgCO3 to 36 Kb. Geochim Cosmochim Acta 39:35–53

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63

    Article  Google Scholar 

  • Kang N, Schmidt MW, Poli S, Franzolin E, Connolly JAD (2015) Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chem Geol 400:34–43

    Article  Google Scholar 

  • Katsura T, Ito E (1990) Melting and subsolidus phase-relations in the MgSiO3–MgCO3 system at high-pressures—implications to evolution of the earths atmosphere. Earth Planet Sci Lett 99:110–117

    Article  Google Scholar 

  • Keppler H, Wiedenbeck M, Shcheka SS (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature 424:414–416

    Article  Google Scholar 

  • Kerrick DM, Connolly JAD (2001a) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411:293–296

    Article  Google Scholar 

  • Kerrick DM, Connolly JAD (2001b) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett 189:19–29

    Article  Google Scholar 

  • Kholodov VN, Butuzova GY (2008) Siderite formation and evolution of sedimentary iron ore deposition in the Earth’s history. Geol Ore Depos 50:299–319

    Article  Google Scholar 

  • Klein C (2005) Some precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Miner 90:1473–1499

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds-a new type of diamond-forming fluid. Lithos 112:648–659

    Article  Google Scholar 

  • Koziol AM (2004) Experimental determination of siderite stability and application to martian meteorite ALH84001. Am Miner 89:294–300

    Article  Google Scholar 

  • Litasov KD, Fei YW, Ohtani E, Kuribayashi T, Funakoshi K (2008) Thermal equation of state of magnesite to 32 GPa and 2073 K. Phys Earth Planet Int 168:191–203

    Article  Google Scholar 

  • Litasov KD, Shatskiy A, Gavryushkin PN, Sharygin IS, Dorogokupets PI, Dymshits AM, Ohtani E, Higo Y, Funakoshi K (2013) P–V–T equation of state of siderite to 33 GPa and 1673 K. Phys Earth Planet Int 224:83–87

    Article  Google Scholar 

  • Mann U, Schmidt MW (2015) Melting of pelitic sediments at subarc depths: 1. Flux versus fluid-absent melting and a parameterization of melt productivity. Chem Geol 404:150–167

    Article  Google Scholar 

  • Merlini M, Tumiati S, Lotti P, Sapelli F, Fumagalli P, Gatta D, Abdellatief M, Plaisier J, Lausi A, Hanfland M, Crichton W, Chantel J, Guignard J, Pavese A, Poli S (2016) High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3–MgCO3–FeCO3. Am Miner 101:1423–1430

    Article  Google Scholar 

  • Molina JF, Poli S (2000) Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O–CO2–bearing basalts. Earth Planet Sci Lett 176:295–310

    Article  Google Scholar 

  • Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE, Clark BC, Golden DC, Siebach K, Klingelhofer G, Schroder C, Fleischer I, Yen AS, Squyres SW (2010) Identification of carbonate-rich outcrops on mars by the spirit rover. Science 329:421–424

    Article  Google Scholar 

  • Panero WR, Kabbes JE (2008) Mantle-wide sequestration of carbon in silicates and the structure of magnesite II. Geophys Res Lett 35:L14307. doi:10.1029/2008GL034442

    Article  Google Scholar 

  • Pask JA (1996) Importance of starting materials on reactions and phase equilibria in the Al2O3–SiO2 system. J Eur Ceram Soc 16:101–108

    Article  Google Scholar 

  • Philipp RW (1998) Phasenbeziehungen im system MgO–H2O–CO2–NaCl. Dissertation. ETH Zurich

  • Philpotts AR (1990) Principles of igneous and metamorphic petrology Anthony R. Philpotts. Prentice Hall, Englewood Cliffs, p 498

    Google Scholar 

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  • Poli S, Franzolin E, Fumagalli P, Crottini A (2009) The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth Planet Sci Lett 278:350–360

    Article  Google Scholar 

  • Putnis A (1992) An introduction to mineral sciences. Cambridge University Press, Cambridge, p 480

    Book  Google Scholar 

  • Rosenberg PE (1967) Subsolidus relations in system CaCO3–MgCO3–FeCO3 between 350° and 550 °C. Am Miner 52:787–796

    Google Scholar 

  • Rubie DC, Brearley AJ (1990) A model for rates of disequilibrium melting during metamorphism. High-temperature metamorphism and crustal anatexis. Volume 2 of the series. The mineralogical society series, pp 57–86

  • Shatskiy A, Litasov KD, Ohtani E, Borzdov YM, Khmelnikov AI, Palyanov YN (2015a) Phase relations in the K2CO3–FeCO3 and MgCO3–FeCO3 systems at 6 GPa and 900–1700 °C. Eur J Miner 27(4):487–499

    Article  Google Scholar 

  • Shatskiy A, Rashchenko SV, Ohtani E, Litasov KD, Khlestov MV, Borzdov YM, Kupriyanov IN, Sharygin IS, Palyanov YN (2015b) The system Na2CO3–FeCO3 at 6 GPa and its relation to the system Na2CO3–FeCO3–MgCO3. Am Miner 100:130–137

    Article  Google Scholar 

  • Shcheka SS, Wiedenbeck M, Frost DJ, Keppler H (2006) Carbon solubility in mantle minerals. Earth Planet Sci Lett 245:730–742

    Article  Google Scholar 

  • Stachel T, Harris JW, Brey GP, Joswig W (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib Miner Petrol 140:16–27

    Article  Google Scholar 

  • Stewart AJ, van Westrenen W, Schmidt MW, Melekhova E (2006) Effect of gasketing and assembly design: a novel 10/3.5 mm multi-anvil assembly reaching perovskite pressures. High Press Res 26:293–299

    Article  Google Scholar 

  • Tao RB, Fei YW, Zhang LF (2013) Experimental determination of siderite stability at high pressure. Am Miner 98:1565–1572

    Article  Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental-determination of primary carbonatite magma composition. Nature 335:343–346

    Article  Google Scholar 

  • Wang A, Pasteris JD, Meyer HOA, DeleDuboi ML (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet Sci Lett 141:293–306

    Article  Google Scholar 

  • Weidner JR (1972) Equilibria in system Fe–C–O. 1. Siderite-magnetite-carbon-vapor equilibrium from 500 to 10,000 bars. Am J Sci 272:735–751

    Article  Google Scholar 

  • Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Miner Petrol 146:606–619

    Article  Google Scholar 

  • Yaxley GM, Green DH (1994) Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett 128:313–325

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to L. Ramalingam for conducting some of the siderite–magnesite experiments at 3.5 GPa. We are thankful to C. Liebske for discussion and technical support in the laboratory and to T. Good and B. Zürcher for mechanical support. We also thank X. Zhong and D. Miron for discussions about thermodynamic solution models. This study was made possible through grant SNF-200020-130100/1 and 200020-140541/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Kang.

Additional information

Communicated by Chris Ballhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, N., Schmidt, M.W., Poli, S. et al. Melting relations in the system FeCO3–MgCO3 and thermodynamic modelling of Fe–Mg carbonate melts. Contrib Mineral Petrol 171, 74 (2016). https://doi.org/10.1007/s00410-016-1283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1283-3

Keywords

Navigation