Skip to main content
Log in

Metabolic effects on stable carbon isotopic composition of freshwater bivalve shell Corbicula fluminea

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The stable isotopic composition of the bivalve shell has been widely used to reconstruct the palaeo-climate and palaeo-environment. The climatic and environmental significance of carbon isotopic composition of the bivalve shell is still in dispute, and incorporation of metabolic carbon can obscure carbon isotope records of dissolved inorganic carbon. This study deals with freshwater bivalve, Corbicula fluminea aragonite shell. The results indicated that the δ13C values of bivalve shells deposited out of equilibrium with the host water and showed an ontogenic decrease, indicating that there are metabolic effects and more metabolic carbon is incorporated into larger shells. The proportion of metabolic carbon of shells varies between 19.8% and 26.8%. However, δ13CS can still be used as qualitative indicators of δ13CDIC and environmental processes that occurred during shell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atekwana E.A. and Krishnamurthy R.V. (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: Application of a modified gas evolution technique [J]. Journal of Hydrology. 205, 265–278.

    Article  Google Scholar 

  • Aucour A.M., Sheppard S.M.F., and Savoye R. (2003) Delta C-13 of fluvial mollusk shells (Rhone River): A proxy for dissolved inorganic carbon? [J]. Limnology and Oceanography. 48, 2186–2193.

    Article  Google Scholar 

  • Chauvaud L., Lorrain A., Dunbar R.B., Paulet Y.-M., Thouzeau G., Jean F., Guarini J.-M., and Mucciarone D. (2005) The shell of the Great Scallop Pecten maximus as a high frequency archive of paleoenvironmental change [J]. Geochemistry Geophysics Geosystems. 6, 1–15.

    Article  Google Scholar 

  • Dettman D.L., Flessa W., Roopnarine D., Schöne R., and Goodwin D. (2004) The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado River discharge [J]. Geochimica et Cosmochimica Acta. 68, 1253–1263.

    Article  Google Scholar 

  • Dettman D.L., Reische A.K., and Lohmann K.C. (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae) [J]. Geochimica et Cosmochimica Acta. 63, 1049–1057.

    Article  Google Scholar 

  • Elliot M., deMenocal P.B., Linsley B.K., and Howe S.S. (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: Potential application to paleoenvironmental studies [J]. Geochemistry Geophysics Geosystems. 4, 1056.

    Article  Google Scholar 

  • Epstein S., Buchsbaum R., Lowenstam H.A., and Urey H.C. (1953) Revised carbonate—water isotopic temperature scale [J]. Geology Society of America Bulletin. 64, 1315–1326.

    Article  Google Scholar 

  • Fritz P. and Poplawski S. (1974) 18O and l3C in the shells of freshwater molluscs and their environments [J]. Earth and Planetary Science Letters. 24, 91–98.

    Article  Google Scholar 

  • Gillikin D.P., Hutchinson K.A., and Kumai Y. (2009) Ontogenic increase of metabolic carbon in freshwater mussel shells (Pyganodon cataracta) [J]. Journal of Geophysical Research. 114, G01007 doi: 10.1029/2008 JG000829.

    Article  Google Scholar 

  • Gillikin D.P., Lorrain A., Bouillon S., Willenz P., and Dehairs F. (2006) Shell carbon isotopic composition of Mytilus edulis shells: Relation to metabolism, salinity δ13CDIC and phytoplankton [J]. Organic Geochemistry. 37, 1371–1382.

    Article  Google Scholar 

  • Gillikin D.P., Lorrain A., Li M., and Dehairs F. (2007) A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells [J]. Geochimica et Cosmochimica Acta. 71, 2936–2946.

    Article  Google Scholar 

  • Goewert A., Surge D., Carpenter S.J, and Dowing J. (2007) Oxygen and carbon isotope ratios of Lampsilis cardium (Unionidae) from two streams in agricultural watersheds of Iowa, USA [J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 252, 637–648

    Article  Google Scholar 

  • Jones D., Arthur M., and Allard D. (1989) Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island [J]. Marine Biology. 102, 225–234.

    Article  Google Scholar 

  • Kaandorp R.J.G., Vonhof H.B., Busto C.D., Wesselingh F.P., Ganssen G.M., Marmol A.E., Pittman L. R., and van Hinte J.E. (2003) Seasonal stable isotope variations of the modern Amazonian freshwater bivalve Anodontites trapesialis [J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 194, 339–354.

    Article  Google Scholar 

  • Keith M.L., Anderson G.M., and Eichler R. (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments [J]. Geochimica et Cosmochimica Acta. 28, 1757–1786.

    Article  Google Scholar 

  • Keller N., Del Piero D., and Longinelli A. (2002) Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione from the Gulf of Trieste (Italy) [J]. Marine Biology. 140, 9–15.

    Article  Google Scholar 

  • Kennedy H., Richardson C.A., Duarte C.M., and Kennedy D.P. (2001) Oxygen and carbon stable isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean [J]. Marine Biology. 139, 1115–1124.

    Article  Google Scholar 

  • Klein R.T., Lohmann K.C., and Thayer C.W. (1996) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: Covariation with metabolic rate, salinity, and carbon isotopic composition of seawater [J]. Geochimica et Cosmochimica Acta. 60, 4207–4221.

    Article  Google Scholar 

  • Krantz D.E., Williams D.F., and Jones D.S. (1987) Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks [J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 58, 249–266.

    Article  Google Scholar 

  • Lorrain A., Paulet Y.-M., Chauvaud L., Dunbar R., Mucciarone D., and Fontugne M. (2004) δ13C variation in scallop shells: Increasing metabolic carbon contribution with body size? [J]. Geochimica et Cosmochimica Acta. 68, 3509–3519.

    Article  Google Scholar 

  • Lorrain A., Paulet Y.M., Chauvaud L., Savoye N., Donval A., and Saout C. (2002) Differential δ13C and δ15N signatures among scallop tissues: Implications for ecology and physiology [J]. J. Exp. Mar. Biol. Ecol. 275, 47–61.

    Article  Google Scholar 

  • McConnaughey T.A. (1989) C and O isotopic disequilibrium in biological carbonates:II. In vitro simulation of kinetic isotope effects [J]. Geochimica et Cosmochimica Acta. 53, 163–171.

    Article  Google Scholar 

  • McConnaughey T.A. and Gillikin D.P. (2008) Carbon isotopes in mollusk shell carbonates [J]. Geo-Marine Letters. 28, 287–299.

    Article  Google Scholar 

  • McConnaughey T.A., Burdett J., Whelan J.F., and Paull C.K. (1997) Carbon isotopes in biological carbonates: Respiration and photosynthesis [J]. Geochimica et Cosmochimica Acta. 61, 611–622.

    Article  Google Scholar 

  • McCorkle D.C., Emerson S.R., and Quay P.D. (1985) Stable carbon isotopes in marine pore waters [J]. Earth and Planetary Science Letters. 74, 13–26.

    Article  Google Scholar 

  • Mook W.G. and Vogel J.C. (1968) Isotopic equilibrium between shells and their environment [J]. Science. 159, 874–875.

    Article  Google Scholar 

  • Mook W.G. (2000) Environmental Isotopes in the Hydrological Cycle: Principles and Applications [Z]. IAEA, http://www-naweb.iaea.org/napc/ih/volumes.asp.

  • Raikow D.F. and Hamilton S.K. (2001) Bivalve diets in a Midwestern U.S. stream: A stable isotope enrichment study [J]. Limnology and Oceanography. 46, 514–522.

    Article  Google Scholar 

  • Roberts D., Rittschof D., Gerhart D.J., Schmidt A.R., and Hill L.G. (1989) Vertical migration of the clam Mercenaria mercenaria (L) (Mollusca, Bivalvia) environmental correlates and ecological significance [J]. Journal of Experimental Marine Biology and Ecology. 126, 271–280.

    Article  Google Scholar 

  • Romanek C.S., Grossman E.L., and Morse J.W. (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate [J]. Geochimica et Cosmochimica Acta. 56, 419–430.

    Article  Google Scholar 

  • Swart P.K. (1983) Carbon and oxygen isotope fractionation in Scleractinian corals: A review [J]. Earth-Science Reviews. 19, 51–80.

    Article  Google Scholar 

  • Tanaka N., Monaghan M.C., and Rye D.M. (1986) Contribution of metabolic carbon to mollusk and barnacle shell carbonate [J]. Nature. 320, 520–523.

    Article  Google Scholar 

  • Turner J.V., Fritz P., Karrow P.F., and Warner B.G. (1983) Isotopic and geochemical composition of marl lake waters and implications for radiocarbon dating of marl lake sediments [J]. Canadian Journal of Earth Sciences. 20, 599–615.

    Article  Google Scholar 

  • Veinott G.I. and Cornett R.J. (1998) Carbon isotope disequilibrium in the shell of the freshwater mussel Elliptio complanata [J]. Applied Geochemistry. 13, 49–57.

    Article  Google Scholar 

  • Wefer G. and Berger W.H. (1991) Isotope paleontology—growth and composition of extant calcareous species [J]. Marine Geology. 100, 207–248

    Article  Google Scholar 

  • Yan Hui, Lee Xinqing, Zhou Hui, Cheng Hongguang, Peng Yan, and Zhou Zhihong (2009) Stable isotope composition of the modern freshwater bivalve Corbicula fluminea [J]. Geochemical Journal. 23, 379–387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Li, Z., Lee, X. et al. Metabolic effects on stable carbon isotopic composition of freshwater bivalve shell Corbicula fluminea . Chin. J. Geochem. 31, 103–108 (2012). https://doi.org/10.1007/s11631-012-0555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-012-0555-5

Key words

Navigation