Skip to main content
Log in

Mineralogy, geochemistry and age dating of shear zone-hosted Nb-Ta-, Zr-Hf-, Th-, U-bearing granitic rocks in the Ghadir and El-Sella areas, South Eastern Desert, Egypt

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The rare metal minerals of mineralized altered granites within the Ghadir and El-Sella shear zones, are represented by betafite, U-minerals (uraninite and uranophane), zircon, monazite, xenotime, and rutile in the Ghadir shear zone. While they are columbite-tantalite minerals as ferrocolumbite, pyrochlore, and fergusonite, Th-minerals (cheralite, uranothorite, and huttonite monazite), Hf-zircon, monazite and xenotime in the El-Sella shear zone. Hf-zircon in the El-Sella and Ghadir shear zones (increasing from the core to the rim) contains high inclusions of U-Th, and REE minerals such as cheralite, uranothorite, huttonite monazite and xenotime especially in the El Sella shear zone. The rare-metal minerals, identified from peralkminous granites of the shear zones are associated with muscovite, quartz, chlorite, fluorite, magnetite, and biotite that are restricted to the two shear zones. Uraninite (low Th content) occurring in the Ghadir shear zone indicates the hydrothermal origin, but there are thorite, uranothorite, cheralite, and Hf-zircon in the El Sella shear zone, also indicating the hyrothermal proccess after magmatic origin. Compositional variations of Ta/(Ta+Nb) and Mn/(Mn+Fe) in columbite from 0.07–0.42 and 0.04–0.33, respectively, and Hf contents in zircon are so high as to be 12%, especially in the rim in the El Sella shear zone. This feature reflects the extreme degree of magmatic fractionation.

Four samples from the altered granites of the Ghadir shear zone also are very low in TiO2 (0.04 wt%–0.17 wt%), Sr [(82−121)×10−6], and Ba [(36−380)×10−6], but high in Fe2O3 T (0.46 wt%–0.68 wt%), CaO (0.64 wt%–1.23 wt%), alkalis (8.59 wt%–8.88 wt%), Rb [(11-203)×10−6], Zr [(98–121)×10−6], Nb [(9-276)×10−6], Ta [(2–139)×10−6], U [(14–63)×10−6], Th [(16–105)×10−6], Pb [(13–32)sx10−6], Zn [(7–8)×10−6], Y [(15–138)×10−6], Hf [(3–9)×10−6], and ΣREE [(81–395)×10−6, especially LREE [(70–322)×10−6]. They are very high in Zr/Hf (15.07–85.96) and Nb/Ta (7.17–21.48), and low in Rb/Sr (2.56–3.36) and Th/U (0.096–3.36). Four samples of the altered granites from the El Sella shear zone are very low in TiO2 (0.23 wt%–0.38 wt%), Sr [(47–933)×10−6], and Ba [(82–175)×10−6], with high Fe2O3 T (1.96 wt%–2.87 wt%), CaO (0.43 wt%–0.6 wt%), alkalis (4.46 wt%–10.7 wt%), Rb [(109–313)×10−6], Zr [(178–1871)×10−6], Nb [(11–404)×10−6], U [(56–182)×10−6], Th [(7-188)×10−6], Ta [(0.5–57)×10−6], Pb [(12–28)×10−6], Zn [(1–13)×10−6], Y [(62–156)×10−6], Hf [(3–124)×10−6], and ζREE [(101–184)×10−6], especially HREE [(7–139)×10−6]. This is consistent with the very fractionated, fluorine-bearing granitic rocks that were altered and sheared in the El Sella shear zone. Zr/Hf (14.23–39.79) and Nb/Ta (1.98–7.01) are very high, and Rb/Sr (0.14–1.7) and Th/U (0.25–2.5) are low in the Ghadir shear zone. Field evidence, textural relations, and the composition of ore minerals suggest that the main mineralizing event was magmatic (615+/−7 Ma, and 644+/−7 Ma CHIME monazite), especially in the El Sella shear zone, with later hydrothermal alteration and local remobilization of the high-field-strength elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadalla H.M., Helba H., and Matsueda H. (2008) Chemistry of zircon in rare metal granitoids and associated rocks, Eastern Desert, Egypt [J]. Resource Geology. 59, 51–68.

    Article  Google Scholar 

  • Abdalla H.M., Matsueda H., Ishihara S., and Miura H. (1994) Mineral chemistry of albite-enriched granitoids at Um Ara, Southeastern Desert, Egypt [J]. Int. Geol. Re. 36, 1067–1077.

    Article  Google Scholar 

  • Abdel Naby H.H. (2008) Genesis of secondary uranium minerals associated with jasperoid veins, El Erediya area, Eastern Desert, Egypt [J]. Minerl Deposita. 43, 933–944.

    Article  Google Scholar 

  • Abdel Wahed A.A., Ammar S.E., Youssief T.F., and El-Husseiny M.O. (2002) Petrography, REE geochemistry and Rb-Sr isotopes study of Abu Tiyur granite, Central Eastern Desert, Egypt. M.E.R.C. Ain Shams University [J]. Earth Science. 16, 16–24.

    Google Scholar 

  • Abdel Warith A.M., Raslan M.F., and Ali M.A. (2007) Mineralogy and Radioactivity of Pegmatite Bodies from the Granitic Pluton of Gabal Um Taghir El-Tahatani Area, Central Eastern Desert, Egypt [C]. pp.24–41. The 10th Interational Mining, Petroleum and Metallurg Engering Confernce, Mining.

  • Abu Dief A. (1985) Geology of Uranium Mineralization in Missikat, Qena-Safaga Road, Eastern Desert, Egypt [D]. pp.242. M.Sc. Thesis, Assiut University, Egypt.

    Google Scholar 

  • Abu-Deif A. (1992) The Relation Between the Uranium Mineralization and Tectonics in Some Pan-African Granites, West of Safaga, Eastern Desert, Egypt [D]. pp.216. Unpublished Ph.D. Thesis, Assiut University.

  • Assaf H.S., Shalaby M.H., Ibrahim M.E., and Rashed M.A. (1996) Ground Radiometric Survey, Shalatin-Halaib Area, Southeastern Desert, Egypt [R]. Internal Report, Nuclear Materials Authority, Egypt.

    Google Scholar 

  • Bowie S.H.U. and Horne J.E.T. (1953) Cheralite, a new mineral of the monazite group [J]. Mineralogical Magazine. 30, 93–99.

    Article  Google Scholar 

  • Braun I., Montel J.M., and Nicollet C. (1998) Electron microprobe dating of monazite from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India [J]. Chemical Geology. 146, 65–85.

    Article  Google Scholar 

  • Bucanan M.S. (1982) The geochemistry of some igneous rock series [J]. Geochim. et Cosmochim. Acta. 9, 101–137.

    Google Scholar 

  • Butler C.A., Holdsworth R.E., and Stachan R.A. (1995) Evidence for caledonian sinistral strike-slip motion and associated fault zone weakening, outer hebrides fault zone, NW Scotland [J]. Journal of Geological So ciety, London. 152, 743–746.

    Article  Google Scholar 

  • Chakhmouradian A.R. and Mitchell R.H. (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia [J].Mineralogical Magazine. 62, 769–782.

    Article  Google Scholar 

  • Cocherie A. and Albarède F. (2001) An improved U-Th-Pb age calculation for electron microprobe dating of monazite [J]. Geochim. et Cosmochim. Acta. 65, 4509–4522.

    Article  Google Scholar 

  • Cocherie A., Legendre O., Peucat J.J., and Kouamelan A.N. (1998) Geochronology of polygenetic monazites constrained by in-situ electron microprobe Th-U-total Pb determination: Implications for lead behaviour in monazite [J]. Geochim. et Cosmochim. Acta. 62, 2475–2497.

    Article  Google Scholar 

  • Cocherie A., Be Mezeme E., Legendre O., Fanning C.M., Faure M., and Rossi P. (2005) Electron-microprobe dating as a tool for determining the closure of ThUPb systems in migmatitic monazites [J]. American Mineralogist. 90, 607–618.

    Article  Google Scholar 

  • Crowley J.L. and Ghent E.D. (1999) An electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite: The role of Pb diffusion versus overgrowth and recrystallization [J]. Chemical Geology. 157, 285–302.

    Article  Google Scholar 

  • Cuney M. (1978) Geologic environment, mineralogy and fluid inclusions of Boisnoirs Limouzat uranium vein, Froez, France [J]. Economic Geology. 73, 567–1610.

    Article  Google Scholar 

  • Cuney M., Le fort P., and Wang Z.X. (1984) Uranium and thorium geochemistry and mineralogy in the Manaslu leucogranite (Nepal, Himalaya). Geology of Granites and Their Metallogenetic Relations (Proc. Symp. Nanijing, 1982) [C]. pp.853–873. University Sceinces Editions.

  • Dawood Y.H. (1998) Isotope Geochemistry of Secondary Ore Deposits and Associated Groundwater, El-Atshan, El-Erediya and El-Missikat Areas, Central Eastern Desert, Egypt [D]. pp.323. Ph. D. Thesis, Ain Shams University.

  • Deer W.A., Howie R.A., and Zussman J. (1966) An Introduction to Rock Forming Minerals [M]. pp.517. Longmans, London.

    Google Scholar 

  • Dixon T.H. (1981) Age and chemical characteristics of some pre-Pan-African rocks in the Egyptian shield [J]. Precambrian Resarch. 14, 119–133.

    Article  Google Scholar 

  • El Agami N.L., Abu Baker M.A., Ibrahim M.E., and Rashed M.A. (1999) Mineralogical and geochemical studies for the mineralization of Halaib area, SouthEastern Desert, Egypt [J]. J. Geol. Sc. 43, 27–38.

    Google Scholar 

  • El Bouseily A.M. and El Sokkary A.A. (1975) The relation between Rb, Ba and Sr in granitic rocks [J]. Chemical Geology. 16, 207–219.

    Article  Google Scholar 

  • El-Gaby S. (1975) Petrochemistry and geochemistry of some granites from Egypt [J]. Neu. Jb. Miner. Abh. 124, 147–189.

    Google Scholar 

  • El-Kammar A.M., Salman A.E., Shalaby M.H., and Mahdy A.I. (2001) Geochemical and genetical constraints on rare metals mineralization at the central Eastern Desert of Egypt [J]. Geochemistry Journal. 35, 117–135.

    Google Scholar 

  • El-Manharawy M.S. (1977) Geochronological Investigation of Some Basement Rocks in Central Eastern Desert, Egypt Between lat. 25° and 26° N [D]. pp.216. Ph. D. Thesis, Cairo University, Egypt.

    Google Scholar 

  • El-Ramly M.F. and Akaad M.K. (1960) The basement complex in the Central Eastern Desert of Egypt between lat. 24° 30′ and 25° 40′ N [J]. Geological. Survey, Egypt. Paper. (8), 35

  • El-Sharkawy M.A. and El-Bayoumi R.M. (1979) The ophiolites of Wadi Ghadir area, Eastern Desert, Egypt [J]. Ann. Geol. Survey of Egypt. IX, 125–135.

    Google Scholar 

  • El-Shazly E.M. (1964) On the Classification of the Precambrian and Other Rocks of Magmatic Affiliation in Egypt [C]. pp.88–101. XXII Inter. XXII Inter. Geol. Congr. Proc. Sect. 10, India.

  • Fayek M., Janeczek J., and Ewing R.C. (1997) Mineral chemistry and oxygen isotopic anaylses of uraninite, pitchblende and uranium alteration minerals from the Cigar Lake deposit, Saskatchewan, Canada [J]. Appl. Geochem. 12, 549–565.

    Article  Google Scholar 

  • Foord E.E., Korzeb S.L., Lichte F.E., and Fitpatrick J.J. (1997) Additional studied on mixed uranyle oxide-hydroxide hydrate alteration products of uraninite from Palermo and Ruggles granitic pegmatites, Grafton Country, New Hampshire [J]. Can. Mineral. 35, 145–151.

    Google Scholar 

  • Förster H.J. (1999) The chemical composition of uraninite in variscan granites of the Erzgebirge, Germany [J]. Mineralogical Magazine. 63, 239–252.

    Article  Google Scholar 

  • Frantz J.D. and Weisbord A. (1974) Infiltration metasomatism in the system K2O-SiO2-Al2O3-H2O-HCl. In Geochemical Transport and Kinetics [M]. 634, 261–271.

    Google Scholar 

  • Friedrich M., Cuney M., and Poty B. (1987) Uranium geochemistry in peraluminous leucogranites—A Conference Report [R]. Uranium. 3, 353–385.

    Google Scholar 

  • Friedrich M.H., Cuney M., and Cregu G. (1989) Uranium Enrichment Processes in Peraluminous Magmatism [Z]. pp.11–35. International Atomic Energy Agency (IAEA)-TC-571/2.

  • Frondel C. (1958) Systematic mineralogy of uranium and thorium [J]. U.S. Geological Survey Bulletin. 1064, 400.

    Google Scholar 

  • Gascoyne M. (1982) Geochemistry of the actinides and their daughters. In Uranium Series Disequilibrium, Applications to Environmental Problems (eds. Ivanovich M. and Harmon R.S.) [M]. pp.33–55.

  • Giere R. (1993) Transport and deposition of REE in H2S-rich fluids: Evidence from accessory mineral assemblage [J]. Chemical Geology. 110, 251–268.

    Article  Google Scholar 

  • Greiling R.O., El-Ramly M.F., Rashwan A.A., and Kamal El-Din G.M. (1993) Towards a comprehensive structural synthesis of the (Proterozoic) Arabian Nubian Shield in e. Egypt. In Geoscient. Res. Northeast Africa (eds. Thorweihe U. and Schandelmeie H.) [M]. pp.15–19. Balkema, Rotterdam.

    Google Scholar 

  • Gnson G.N. (1978) Application of trace elements to the petrogenesis of igneous rocks of granitic composition [J]. Earth Plantary Science Letter. 39, 26–43.

    Google Scholar 

  • Hashad A.H. (1980) Present status of geochronological data on the Egyptian basement complex [J]. Institute Applied Geology Bulletin. Jeddah. 4, 31–46.

    Google Scholar 

  • Hassan M.A. and Hashad A.H. (1990) Precambrian of Egypt. The anorogenic alkalic rocks, South Eastern Desret, Egypt [J]. Annal Geological Survery. Egypt. 9, 81–101.

    Google Scholar 

  • Hume W.F. (1935) Geology of Egypt. Vol. II, Part II. The later plutonic and intrusive rocks. In Geological Survery Egypt [M]. pp.301–688. Government Press, Cairo.

    Google Scholar 

  • Humphris S.E. (1984) The mobility of the REE in the crust. In REE Geochemistry (ed. Henderson P.) [M]. pp.317–342. Elsevier, Amsterdam.

    Google Scholar 

  • Hussein A.A., Ali M.M., and El-Ramly M.F. (1982) A proposed new classification of the granites of Egypt [J]. Journal Volcanic Geoth. Re. 14, 187–198.

    Article  Google Scholar 

  • Hussein H.A. (1978) Lecture Course in Nuclear Geology [M]. pp.101. Nuclear Materials Authority, Cairo, Int. Rep.

    Google Scholar 

  • Hussein H.A., Hassan M.A., El Tahir M.A., and Abu-Deif A. (1986) Uranium bearing siliceous veins in younger granites, Eastern Desert, Egypt [R]. Report of the Working Group on Uranium Geology, IAEA, Vienna, TECDOC. 361, 143–157.

    Google Scholar 

  • Ibrahim I.H. and Ali M.A. (2003) The granitic rocks in Wadi Ghadir area, South Eastern Desert, Egypt and occurrence of a secondary uranium mineral [J]. Egptian Journal of Geology. 47(2), 671–687.

    Google Scholar 

  • Ibrahim M.E. (1986) Geologic and Radiometric Studies on Um Ara Granite Pluton, South East Aswan, Egypt [D]. M.Sc. Thesis, Mansoura University, Egypt.

    Google Scholar 

  • Ibrahim M.E., Zalata A.A., Assaf H.S., Ibrahim I.H., and Rashed M.A. (2005) El Sella Shear Zone, South Eastern Desert, Egypt. Example of Vein-type Uranium Deposit [C]. pp.41–55. The 9th International Mining, Petroleum, and Metallurgical Engering Conference, Mining.

  • Irber W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites [J]. Geochim. et Cosmochim. Acta. 63, 489–508.

    Article  Google Scholar 

  • Janeczek J. and Ewing R.C. (1995) Mechanisms of lead release from uraninite in the natural fission reactors in Gabon [J]. Geochim. et Cosmochim. Acta. 59, 1917–1931.

    Article  Google Scholar 

  • Janeczek J. and Ewing R.C. (1992) Structural formula of uraninite [J]. J. Nucl. Mater. 185, 66–77.

    Article  Google Scholar 

  • Jefferies N.L. (1984) The distribution of the rare earth elements within the Carnmeneltis Pluton, Cornwall [J]. Mineralogical Magazine. 49, 495–504.

    Article  Google Scholar 

  • Jiashu R. and Zehong H. (1982) Forms of Uranium occurrence and its distribution in uraniferous granites. In Geology of Granites and Their Metallogenetic Relations [M]. pp.621–635. Sciences Press, Beijing.

    Google Scholar 

  • Keppler H. (1993) Influence of fluorite on the enrichment of high field strength trace elements in granitic rocks [J]. Contribution Mineralogy and Petrology. 114, 479–788.

    Article  Google Scholar 

  • Knorring O.V. and Hornung G. (1961) Hafnian zircons [J]. Nature. 190, 1098–1099.

    Article  Google Scholar 

  • Kobranova V.N. (1989) Petrophysics [M]. pp.375. Springer, Berlin Heidelberg, New York.

    Google Scholar 

  • Korzeb S.L., Foord E.E., and Lichte F.E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire [J]. Canadian Mineralogist. 35, 135–144.

    Google Scholar 

  • Langmuir D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits [J]. Geochim. et Cosmochim. Acta. 42, 547–569.

    Article  Google Scholar 

  • Linthout K. (2007) Tripartite division of the system 2REEPO4-CaTh(PO4)2-2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2 [J]. Canadian Mineralogist. 45, 503–508.

    Article  Google Scholar 

  • Longerich H.P. (1995) Analysis of pressed powder pellets of geological samples using wavelength-dispersive X-ray fluorescence spectrometry [J]. X-ray Spectrometry. 24, 123–136

    Article  Google Scholar 

  • Ludwig K.R. (1999) Users Manual for ISOPLOT/EX, Version 2. A Geochronological Toolkit for Microsoft Excel [Z]. Berkeley Geochronology Center, Special Publication 1a.

  • Mann A.W. and Deutscher R.L. (1980) Solution chemistry of lead and zinc in water containing carbonate, sulfate and chloride ions [J]. Chem. Geol. 29, 293–311.

    Article  Google Scholar 

  • McMillan R.H. (1978) Genetic aspects and classification of important Canadian uranium deposits. In Uranium Deposits. Their Mineralogy and Origin (ed. Kimberly M.M.) [M]. Mineral. Soc. Canada Short Course. Handbook. 3, 187–204.

  • Mineyev D.A. (1963) Geochemical differentiation of the rare earth geochemistry [J]. USSR. 12, 1129–1149.

    Google Scholar 

  • Moghazi A.M., Hassanen M.A., Mohamed F.H., and Ali S. (2004) Late Neoproterozoic strongly peraluminous leucogranites, South Eastern Desert, Egypt-petrogenesis and geodynamic significance [J]. Mineral. Petrol. 81, 19–41.

    Article  Google Scholar 

  • Moussa E.M.M., Stern R.J., Manton W.I., and Ali K.A. (2008) Shrimp zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert, Egypt [J]. Precamb. Res. 160, 341–356.

    Article  Google Scholar 

  • Murakami T., Ohnuki T., Isobe H., and Soto T. (1997) Mobility of uranium during weathering [J]. American Mineralogist. 82, 888–899.

    Google Scholar 

  • Osmond J.K., Dabous A.A., and Dawood Y.H. (1999) U series age and origin of two secondary uranium deposits, Central Eastern Desert, Egypt [J]. Economic Geology. 94, 273–280.

    Article  Google Scholar 

  • Pagel M. (1982) The mineralogy and geochemistry of uranium, thorium and rare-earth elements in two radioactive granites of the Vosges, France [J]. Mineralogical Magazine. 46, 149–161.

    Article  Google Scholar 

  • Pal D.C., Mishra B., and Bernhardt H.J. (2007) Mineralogy and geochemistry of pegmatite-hosted Sn-, Ta-Nb-, and Zr-Hf-bearing minerals from the southereastern part of the Bastar-Malkangiri pegmatite belt, Central India [J]. Ore Geology Reviews. 30, 30–55.

    Article  Google Scholar 

  • Pal N., Pal D.C., Mishra B., and Meyer F.M. (2001) The evolution of the Palim granite in the Bastar tin province, Central India [J]. Mineralogy and Petrology. 72, 281–304.

    Article  Google Scholar 

  • Parrish R.R. (1990) U-Pb dating of monazite and its application to geological problems [J]. Canadian Journal of Earth Sciences. 27, 1431–1450.

    Article  Google Scholar 

  • Pommier A., Cocherie A., and Legendre O. (2002) EPMA Dating User’s Manual: Age Calculation from Electron Probe Microanalyser Measurements of U-Th-Pb [Z]. pp.9. BRGM Documents.

  • Podor R., Cuney M., and Nguyen Tung C. (1995) Experimental study of the solid solution between monazite and (Ca0.5U0.5)PO4 at 780°C and 200 MPa [J]. Am. Mineral. 80, 1261–1268.

    Google Scholar 

  • Poty B., Cuney M., and Friedrich M. (1986) Uranium Deposits Spatially Related to Granites in the French Part of the Hercynian Orogeny, Vein type Uranium Deposits [Z]. pp.215–246. IAEA-TECDOC-361, IAEA, Vienna.

    Google Scholar 

  • Rameshbabu P.V. (1999) Rare metal and rare earth pegmatites of Central India [J]. Special Issue on Rare Metal and Rare Rarth Pegmatites of India, Exploration and Resarch. 12, 7–52.

    Google Scholar 

  • Rashed M.A. (2001) Geology, Petrology and Uranium Potential of Gabal Qash Amir-gabal El Sella Granitic Mass, South Eastern Desert, Egypt [D]. pp.200. M.Sc. Thesis Fac. Sceince, Mansoura University.

  • Rogers J.J.W. and Adams J.S.S. (1969) Uranium. In Handbook of Geochemistry (ed. Wedepohl K.H.) [M]. New York, Springer-Verlag. 4, 92B1–92C10.

    Google Scholar 

  • Romberger S.B. (1984) Transport and deposition of uranium in hydrothermal systems at temperatures up to 300°C: Geological implications. In Uranium Geochemistry and Resources (eds. Devivo B., Ippolito F., Capaldi G., and Simpson P.R.) [M]. pp.12–17. The Inst.Min.Metall.

  • Roz M.E. (1994) Geology and Uranium Mineralization of Gabal Gattar Area, North Eastern Desert, Egypt [D]. pp.175. M.Sc. Thesis, Al Azhar University, Egypt.

    Google Scholar 

  • Steenfelt A. (1982) Uranium and selected trace elements in granites from the Calidonides of East Greenland [J]. Mineralogical Magazine. 46, 201–210.

    Article  Google Scholar 

  • Stern R.J. and Hedge C.E. (1985) Gechronologic and isotopic contraints on Late Precambrain crustal evolution in the Eastern Desert in Egypt [J]. Am. Journal Science. 258, 97–127.

    Article  Google Scholar 

  • Stuckless J.S. and Ferreira C.P. (1976) Labile uranium in granitic rocks. Proceedings of a symposium on exploration of uranium ore deposits [J]. IAEA, Vienna. 208–217

    Google Scholar 

  • Sultan M., Arvidson R.E., Duncan I. J., Stern R.J., and El-Kalioubi B. (1988) Extension of the Najd shear system from Saudi Arabia to the central Eastern Desert of Egypt based on integrated field and landsat observations [J]. Tectonics. 7(6), 1291–1306.

    Article  Google Scholar 

  • Sweewald J.S. and Sayfried J.W. (1990) The effect of temperature on metal mobility in subsea floor hydrothermal systems: Constraints from basalt alteration experiments [J]. Earth Planet Science. 101, 388–403.

    Article  Google Scholar 

  • Takla M.A., Basta F.F., Shenouda H.H., and El-Maghraby A.M. (1992) Geochemistry of geneisses and granitoids of Wadi Ghadir area, Eastern Desert, Egypt [J]. GAW, Cairo Univ. I, 477–489.

    Google Scholar 

  • Townsend K.J., Miller C.F., D’Andrea J.L., Ayers J.C., Harrison T.M., and Coath C.D. (2000) Low temperature replacement of monazite in the Ireteba granite, southern Nevada: geochronological implications [J]. Chemical Geology. 172, 95–112.

    Article  Google Scholar 

  • Taylor S.R. and McLennan S.M. (1985) The Continental Crust: Its Composition and Evolution [M]. pp.312. Blackwell.

  • Vuorinen J.H. and Hålenius U. (2005) Nb-, Zr- and LREE-rich titanite from the Alnö alkaline complex: Crystal chemistry and its importance as a petrogenetic indicator [J]. Lithos. 83, 128–142.

    Article  Google Scholar 

  • Weyer S., Münker C., Rehkomper M., and Mezger K. (2002) Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS [J]. Chemical Geology. 187(3–4), 295–313.

    Article  Google Scholar 

  • Wronkiewicz D.S., Bates J.K., Gerding T.J., Veleckis E., and Tani B.S. (1992) Uranium release and secondary phase formation during unsaturated testing of UO2 at 90°C [J]. J. Nuclear Materials. 190, 107–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.A., Lentz, D.R. Mineralogy, geochemistry and age dating of shear zone-hosted Nb-Ta-, Zr-Hf-, Th-, U-bearing granitic rocks in the Ghadir and El-Sella areas, South Eastern Desert, Egypt. Chin. J. Geochem. 30, 453–478 (2011). https://doi.org/10.1007/s11631-011-0531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-011-0531-5

Key words

Navigation