Skip to main content
Log in

Pattern formation in rotating fluids

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Flows in nature and technology are often associated with specific structures and pattern. This paper deals with the development and behaviour of such flow pattern. Flow structures are important for the mass, momentum and energy transport. The behaviour of different flow pattern is used by engineers to obtain an efficient mass and energy consumption. Mechanical power is transmitted via the momentum of rotating machine parts. Therefore the physical and mathematical knowledge of these basic concepts is important. Theoretical and experimental investigations of principle experiments are described in the following. We start with the classical problem of the flow between two concentric cylinders where the inner cylinder rotates. Periodic instabilities occur which are called Taylor vortices. The analogy between the cylindrical gap flow, the heat transfer in a horizontal fluid layer exposed to the gravity field and the boundary layer flow along concave boundaries concerning their stability behaviour is addressed. The vortex breakdown phenomenon in a cylinder with rotating cover is also described. A generalization to spherical sectors leads then to investigations with different boundary conditions. The spherical gap flow exhibits interesting phenomena concerning the nonlinear character of the Navier-Stokes equations. Multiple solutions in the nonlinear regime give rise to different routes during the laminar-turbulent transition. The interaction of two rotating spheres results in flow structures with separation and stagnation lines. Experimental results are confirmed by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zierep, J.: Instabilitäten in Strömungen zäher, wärmeleitender Medien, Z. Flugwiss. Weltraumforschung 2, Heft 3, S.143–150 (1978)

    ADS  Google Scholar 

  2. Taylor, G.I.: Stability of a Viscous Liquid Contained between Two Rotating Cylinders, Proc. Roy. Soc. (A) 223, p. 289–343 (1923)

    Google Scholar 

  3. Bühler, K.: Ein Beitrag zum Stabilitätsverhalten der Zylinderspaltströmung mit Rotation und Durchfluß. Mitt. Institut Strömungslehre und Strömungsmaschinen, Universität Karlsruhe, Heft 32, S.35–44 (1982)

  4. Chandrasekhar, S.: Hydrodynamics and Hydromagnetic Stability, Oxford University Press, Oxford, 1961

    Google Scholar 

  5. Oswatitsch, K.: Physikalische Grundlagen der Strömungslehre, Handbuch der Physik Bd. VIII/1 S.1–124 (1959)

    MathSciNet  Google Scholar 

  6. Bühler, K.: Der Einfluß einer Grundströmung auf das Einsetzen thermischer Instabilitäten in horizontalen Fluidschichten und die Analogie zum Taylor-Problem, Mitt. Institut Strömungslehre und Strömungsmaschinen, Universität Karlsruhe, Heft 34, S.67–76 (1984)

  7. Görtler, H.: Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden, Nachr. Ges. Wiss. Göttingen, Math.-Phys.Kl. Neue Folge, Fachgruppe I, Bd.2, S.1–26 (1940)

    Google Scholar 

  8. Zierep, J.: Elementare Betrachtungen über Görtler-Wirbel, ZAMM 61, T 199–T 202 (1981)

  9. Koschmieder, E.L.: Benard Cells and Taylor Vortices, Cambridge University Press, Cambridge, 1993

    MATH  Google Scholar 

  10. Wimmer, M.: Viscous flows and instabilities near rotating bodies, Progr. Aerospace Sci., 25, p.43–103 (1988)

    Article  ADS  Google Scholar 

  11. Zierep, J.: Viscous potential flow, Arch. Mech. Stosowanej, 36, p.127–133 (1984)

    Google Scholar 

  12. K. Bühler: Visualization of flow structures in rotating fluids, 8th Int. Symp. on Flow Visualization, Sorrento, Italy, (1998) CD Rom Proceedings ISBN 0953399109 paper 79 p.1–11

  13. Vogel, H.U.: Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe, MPI für Strömungsforschung, Bericht 6 (1968)

  14. Escudier, M.P.: Observations of the flow produced in a cylindrical container by a rotating end wall, Experiments in Fluids 2, p.189–196 (1984)

    Article  ADS  Google Scholar 

  15. Benjamin, T.B.: Theory of the vortex breakdown phenomenon, J. Fluid Mech. 14, p.593–629 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lugt, H., Abboud, M.: Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid, J. Fluid Mech. 179, p. 179–200 (1987)

    Article  MATH  ADS  Google Scholar 

  17. Bühler, K.: Wirbelströmungen mit Rückströmgebieten, DGLR-Jahrbuch Bd.II, S. 887–894 (1994)

    Google Scholar 

  18. Bühler, K.: Vortex breakdown phenomena in rotating fluids. Proc. ASME/JSME Fluids Engineering and LDA conference, Hilton Head Island SC, USA FED-Vol.218, p. 45–51, (1995)

    Google Scholar 

  19. Sawatzki, O., Zierep, J.: Das Stromfeld im Spalt zwischen zwei rotierenden Kugelflächen, von denen die innere rotiert, Acta Mechanica 9, S.13–35 (1970)

    Article  Google Scholar 

  20. Wimmer, M.: Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech. 78, p. 317–335 (1976)

    Article  ADS  Google Scholar 

  21. Bühler, K.: Symmetric and asymmetric Taylor vortex flow in spherical gaps. Acta Mechanica 81, 3–38 (1990)

    Article  MathSciNet  Google Scholar 

  22. Bühler, K. Louw, J.W.: Numerical Simulations of Spherical Gap Flows, Proc. Comsol Conference, Hannover, (2008)

  23. Bühler, K., Zierep, J.: New Secondary Instabilities for High Re-Number Flow between two Rotating Spheres. Proc. IUTAM Second Symposium on Laminar-Turbulent Transition, Novosibirsk, USSR, 9.-13.7.1984. In: Laminar-Turbulent Transition, ed. V.V. Kozlov, Springer-Verlag, 677–685, 1985

  24. Zierep, J.: Special Solutions of the Navier-Stokes Equations in the Case of Spherical Symmetry, Rev. Roum. Math.Pures et Appl., TOME XXVII, No 3, p.423–428 (1982)

    ADS  MathSciNet  Google Scholar 

  25. Bühler, K., Zierep, J.: Die Strömung im Spalt zwischen zwei rotierenden Kugeln mit Durchfluß. ZAMM 62, T 198–201 (1982)

    Google Scholar 

  26. Bühler, K.: Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. Habilitationsschrift, Fakultät für Maschinenbau, Universität Karlsruhe 1985 Fortschritt-Berichte VDI Reihe 7, Nr. 96, Düsseldorf 1985

  27. Davis, A.M.J., Bühler, K., Weidman, P.D.: On secondary flow due to the coaxial rotation of two spheres: Low Reynolds number theory and finite Reynolds number experiment. Q.Jl Mech. Appl. Math, 56(4), 547–569, (2003)

    Article  MATH  Google Scholar 

  28. Bühler, K. Louw, J.W.: Numerical Simulation of the Secondary Flow due to the Coaxial Rotation of two Spheres, Proc. Comsol Conference, Grenoble, France Ed.: J.-M. Petit and O. Sqalli, Vol.1 p. 326–332 (2007)

  29. Bühler, K. Louw, J.W.: Visualization and Numerical Simulation of the Secondary Flow due to the Coaxial Rotation of two Spheres, International Symposium on Flow Visualization 2008, Nice, France Ed.:J.P. Prenel and Y. Bailly, CD Rom Proceedings Paper 309

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr.-Ing. Prof.E.h. Dr.techn.E.h. Dr.h.c. Jürgen Zierep for his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bühler, K. Pattern formation in rotating fluids. J. Therm. Sci. 18, 109–118 (2009). https://doi.org/10.1007/s11630-009-0109-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-009-0109-2

Keywords

Navigation